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Chapter One Vector Analysis

1.1 Scalars and Vectors:

A scalar is a quantity that has only magnitude. Quantities such as time, mass, distance,
temperature, entropy, electric potential and population are scalars. Symbolically, a scalar

is represented by either lower or upper case letters.

A vector is described by two quantities: a magnitude and a direction in space at any
point and for any given time. Therefore, vectors may be space and time dependent. Vector

quantities include velocity, force, displacement and electric field intensity.

Graphically, a vector is represented by directed line segment in the direction of the
vector with its length proportional to its magnitude. Symbolically, a vector is represented
by placing a bar over the letter symbol used for a given quantity, such as A and B, or by a

letter in boldface type such as A and B.

1.2 Vector Addition and Subtraction:

Two vectors A and B can be added (subtracted) together to give another vector C ( D);

ic.C=A+B:D=4A—-B= A+ (-B)

Graphically, vector addition and subtraction are obtained by either the parallelogram rule

or the head to tail rule as portrayed in Fig. 1.1 and 1.2, respectively.
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{a) i)

Fig. 1.1 Vector addition C = A + B : (a) parallelogram rule, (b) head to tail rule
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Fig. 1.2 Vector subtraction D = (A) — B : (a) parallelogram rule, (b) head-to-tail
rule.

The three basic laws of algebra obeyed by any given vectors 4, B and C are summarized

as follows:

Law Addition Multiplication
Commutative A+B=B+ A kA =Ak
Associative A+B+C)=(A+B)+C k(LA)= (kL) A
Distributive k(A +B)= kA +kB

Where k and L are scalars.



Chapter One Vector Analysis

1.3 Products of Vectors

The multiplication of two vectors is called a product. two types of products based on the
result obtained from the product. The first type is the scalar product. This is a product of
two vectors which results in a scalar. The second is a vector product of two vectors, which
results in a vector.

1.3.1 The Dot Product:

The dot product of two vectors A and B , written as A . B, is defined geometrically as the
product of the magnitude of A and B and the cosine of the smaller angle between them.

IfA = Ayax+A, ay+A,azand B = B, ax + B, ay + B, az, then:

A.B= A,B,+A,B,+4,B,

Notes:
1-A.B=B. A (Commutative Law)
2-A.(B+ C)= A.B+ A.C (Distributive Law)
3-A. A= |A|?
4- ax.ay = ay.az=ax.az =0 andax.ax = ay.ay =az.az=1

A direct application of dot product is its use in determining the projection (or Component)
of a vector in a given direction. The projection can be scalar or vector. Given a vector 4 ,
we define the scalar projection Ag of A along B as [see Fig. 1.3a]

Ag = |A] cos O, = |Allag| cosbyp
OI‘ AB == 14_63

The vector projection Ag of A along B is simply the scalar projection Az multiplied by a

unit vector along B; is:

Ap = Ag Qg =(/T-aB) ag
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Both the scalar and vector projections of A are illustrated in Fig. 1.3.

A A

’_—PB o > B

(a) (b)

Fig. 1.3 Components of A along B: (a) scalar component A ; (b) vector component Ag.

Example 1: -

Given vectors A = 3ax + 4ay + az and B = 2ay — 5az . Find: (a) A. B ; (b) 045 ;
(c) The scalar component of A along B ; (d) The vector projection of A along B .

Solution:
(a) A. B = (3ax + 4ay + az).(2ax — 5az) = 3(0) + 4(2) + 1(-5) =3
)4l = V9+16+1= 26 and|B|= VO+4+ 25 = 29

o o A.
A. B = |A||B| cosf, = cosb,z = i = > = (0.1092

0,45 = cos™1(0.1092) = 83.73°

(c) dg=A.a A B 3 0.557
C = .a = — = = .
g 7Bl V29

B 0.557 (2ax — 5az)
Bl V29

Ag = 0.207ax — 0.517az
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H.W 1:

Decompose the vector A = —2ax + 3ay + 5az on to vectors parallel and perpendicular
to the vector B = ax — 2ay — 2az.

Ans.: —2ax +4ay+4az; —ay+az

1.3.2 The Cross Product:

The cross product of two vectors A and B , written as A X B, is a vector quantity whose
magnitude is the area of the parallelepiped formed by A and B (see Fig. 1.4) and is in the
direction of advanced of right-handed screw as A is turned in to B.

Thus: A X B = |A||B| sin8,5 an

Where an is a unit vector normal to the plane containing A and B . The direction of an is
taken as the direction of the right thumb when the fingers of the right hand rotate from A
to B as shown in Fig. 1.5a. Alternatively, the direction of @n is taken as that of the advance
of a right-handed screw as A is turned into B as shown in Fig. 1.5b.
IfA = Ayax+A, ay+A,azand B = B, ax + B, ay + B, az, then:

ax ay az
A X B= Ax Ay Az
B, B, B,

= (A,B, — ByA,)ax — (A.B,-A,B,) ay + (A.B, — A,B,)az

AXB

Fig. 1.4 The cross product of A and B is a
vector with magnitude equal to the area of
the parallelogram and direction as
indicated.
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(Iv)

Fig. 1.5: Direction of A X B and an using: (a) right-hand rule, (b) right-handed screw

rule.

Notes:
1-AX B# Bx A (it is not commutative)

AX B=—-B x A (it is anti-commutative)

2-AXBxC)+=(AxB)xC (It is not associative)
3-Ax(B+ C)= AxB+ AxC (It is distributive)
4-A X A=0
S-axXay=az; ayXaz=ax; ax X az = ay
6- ax Xax=ayxXay=azxaz=0

a
3! \;z
N \T/a y
a,
a)

(b)
Fig. 1.6 Cross product using cyclic permutation: (a) moving clockwise leads to positive

results: (b) moving counterclockwise leads to negative results.



Chapter One Vector Analysis

Example 2: -

Points P(1,2,3), P»(-5,2,0) and P3(2,7,-3) form a triangle in space. Calculate (a) The area
of the triangle; (b) The unit vector perpendicular to the plane containing the triangle.

Solution:
Tp1 = ax + 2ay +3az; 7,, = —5ax+ 2ay and 7,3 = 2ax + 7ay — 3az
(a) T_plpz = r_pz - fpl = _6dx - 3&2 al’ld T_plpg = fps - T‘_pl = dx + de - 652
ax ay az
pip2z X Tpipz3 = |—6 0 =3[ = (0+15)ax— 36+ 3)ay + (—30—0)az
1 5 -6

Area of the triangle =%|fp1p2 X fp1p3| = %\/152 + 392 4+ 302 = 25.72

fplpz X fp1p3 _ i 155)(,' - 39&3’ - 30&2
B 51.44

(b) a, = + = -
|rp1p2 X rp1p3|

~ a, = +(0.291ax — 0.758ay — 0.583az)
Example 3: -

The vertices of triangle are located at P(4,1,-3), P»(-2,5,4) and P5(0,1,6). Find the three
angles of the triangle.

Solution:

Tp1 = 4ax +ay —3az ;7,, = —2ax + 5ay + 4az and 7,3 = ay + 6az
Let A =Ty1py = Tpy — Tpy = —6ax +4ay +7a

B = Tyop3 = Tp3 — Ty = 2ax — 4ay + 2az

C = Tpap1 = Tpy — Tp3 = 4ax — 9az

Notethat A+ B+ C =0
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A.B = |A||B|cosa; = cosa; = —

|Al|B| 101v/24
. — -1 —14 — o — _ — o
Py = C0ST e = 106.52° = 6, =180 —a, = 73.48
_ B.C 8+0-18
B.C = |B||C|cosa, = cosa2=|§”_|= NG
. — -1_—~10 o —_ _ _ o
Uy = C0ST s = 101.96° = 6, = 180 — a, = 78.04

- CA —-24+0-63
C.A=|C||A|cosa; = cosa; = Al = N e

. — -1__—87 — o — _ — o
P g =COST T e = 151.52° = 05 =180 — a3 = 28.48

A

Fig. 1.7 for Example 3.

Note that 61 + 92 + 93 = 180°

H.W_2: Show that vectors A = —5ax—3ay—3az , B =ax+ 3ay+4az and
C = 4ax — az form the sides of a triangle. Is this a right-angle triangle? Calculate the area
of the triangle.
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Ans.: Yes; 10.5

H.W _3: Show that points P;(5,2,-4), P»(1,1,2) and P3(-3,0,8) all lie on a straight line.
Determine the shortest distance between the line and point P4(3,-1,0).

Ans.: 2.426

1.4 Scalar and Vector Fields:

A field is a function that specifies a particular quantity everywhere in a region. If the
quantity is scalar (or vector), the field is said to be a scalar (or vector) field. Examples of
scalar fields are temperature distribution in a building, sound intensity in a theater, and
electric potential in a region. The gravitational force on a body in space, the velocity of
raindrops in the atmosphere, and the electric field intensity are examples of vector fields.

Example 4: -

A vector field S is expressed in Cartesian coordinates as:

(x—Dax+ (y—2)ay + (z+ 1)az

§=125 x—1)2+ (@ —-2)2+(z+1)?

(a) Evaluate S at P(2,4,3). (b) Determine a unit vector that gives the direction of S at P.
(c) Specify the surface f(x,y,z) on which |S| = 1.

Solution:
(a) at P(2,4,3)

ax + 2ay + 4az
12 4+ 22 442

=S =125

. §=1595ax + 11.9ay + 23.8az
(b) at P(2,4,3)

S 5095ax+119ay + 23.8az
= as = —=
| 27277

~ ag = 0.218ax + 0.436ay + 0.873az

el



Chapter One Vector Analysis

(x—Dax+ (y—2)ay + (z+ 1)az

©+5=125 v o2t @+ D)
SNE 125 V(x —1)2 2)2 1)2=1
N R e e R CE I T CEE e
15 125 _,

\/(x—1)2+(y—2)2+(z+1)2

aJx =12+ (y—2)2+(z+1)2 =125

H.W 4: Two vector field are: F = —10ax + 20x(y — 1)ay and G = 2x%yax — 4ay +
zaz. For the point P(2,3,-4), find: (a) |F|; (b) |G| ; (c) a unit vector in the direction of
F — G ;(d) aunit vector in the direction of F + G.

Ans.: 80.6; 24.7; —0.37ax + 0.92ay + 0.04az ; 0.18ax + 0.98ay — 0.05az

1.5 Systems of Coordinates

In this section, three orthogonal systems will be discussed which include: Cartesian,
cylindrical, and the spherical system of coordinates.

1.5.1 _Cartesian ( Rectangular) Coordinates (x,y, Z)

A point P(x, y, z) in Cartesian coordinates is located by giving its x, y and z coordinates.
Fig. 1.8a shows the points P and Q whose coordinates are (1, 2, 3) and (2,-2, 1),
respectively. Intersection of three mutually perpendicular planes defines a point in
Cartesian coordinates, and as shown in Fig. 1.8b.

A vector A in Cartesian coordinates may be represented as: A = A, ax + A, ay+ A, az,
and shown in Fig. 1.9

10
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where A, , A, and A, are called the components of A in the x, y and z directions

respectively; ax ,ay and az are unit vectors in the X, y and z directions, respectively.

z = const.
= P(1,2,3)

st 4

h’A"

y = const,

(a) (b)

Fig. 1.8 (a) The Location of point P and Q. (b) The three mutually perpendicular

planes of the Cartesian coordinate system.

1
1 A A.a
Fig. 1.9 (a) Unit vectors ax, ay, and 1
az, (b) components of A along ax, a' L ,
ay, and az O L
AXaX
AJ"B-}

Any vector can be written as: @ (b)

A = |A|a, , where:

|A| = JAZ+ A24+A2  The magnitude of the vector A

_ A A ax+ A, ay+A,az
A, = ———
A JAZ + A2+ A2

11
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Unit vector along the vector A.

la,| =1, a, is a vector of unity magnitude.

|

IfA = Ayax+A, ay+A,azand B = B, ax + B, ay + B, az, then:

|

+By)ax+ (A, +B))ay+ (A, + B,) az

B = (A,
—B= (A, —B)ax+(Ay—B,)ay+ (A, —B,) az

|

Position Vector:

The position vector 7, (or radius vector) of point P(x,y,z) is as the directed distance from

the origin O to P; 1. e.,

7, =0P=xax+y ay+zaz

The position vector for point P is useful in defining its position in space. Point P(3.4,5), for
example, and its position vector

7, = 0P = 3ax+4 ay+ 5 az, are shown in Fig. 1.10a.

Distance Vector:

The distance vector is the displacement from one point to another.

If two points P and Q are given by (xp ,yp ,zp) and (xq, Yo , Zg), the distance vector (or
separation vector) is the displacement from P to Q as shown in Fig. 1.10b; that is

12
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TpQ

X O rQ
(a) (b)

Fig. 1.10 (a) Illustration of position vector 7, = 3 ax + 4 ay + 5 az (b) Distance vector

fPQ .

Tpg =To — Tp = (Xg —xp) ax + (yo —¥p) Ay + (29 — zp) Gz

The distance between the points P and Q is given by:

d = |7pe| = \/(xQ —xp) + (v —¥p)" + (20— 2)?

Differential Length, Area and Volume in Cartesian Coordinates:

From Fig. 1.11, we notice that:

1. Differential length is given by:

dL = dxax +dy ay +dzaz, Vector Quantity

dL = \/dx? + dy? + dz?, Scalar Quantity

2. Differential normal area is given by:

ds = dydzax
=dx dz ay, Vector Quantity

=dxdyaz

13
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3. Differential volume is given by:

dV =dxdydz, Scalar Quantity
z ds, =7 dxdy
A
dy
dx

g~ ds, =y dx dz

/ZI dz
7 dv =dx dy dz

Fig. 1.11 Differential length, area, and volume in Cartesian coordinates.
Example 5: - Given the points M(2, -1,1) and T(-4, -2,6). Find: (a) the position vector for
point M and T; (b) a unit vector from M to T; (c) the distance from M to T.
Solution:
(@rny=2ax— ay+az and r=—4 ax—2 ay+6az

(b) The vector from M to T is given by:

fur = Tr— Ty = (—4—2)ax+ (-2 - (-1))ay+ (6 — Daz= —6ax—ay +5az

_ TuT —6ax —ay+5az —6ax —ay+5az
S A = — = =
M Nfurl J(=6)7 + (—1)? + (5)2 V62

Qe = —0.762 ax — 0.127 ay + 0.635 az
(¢) The distance from M to T is given by:

14
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d = |Fyr| = V62 = 7.874 [m]
Example 6: - Given vectors A = ax + 3azand B = 5ax + 2 ay — 6 az, determine:

(@a)]A +B|; (b)5A4 —B; (c)The componentof A along ay ; (d) A unit vector
along 34 + B.

Solution:

(@)A +B=(ax+ 3az)+(5ax+2ay—6az)=6ax+2ay—3az

~ |A+B|=62+22+(-3)2=+V36+4+9=7
(b)54 —B=5(ax+ 3az)— (5ax+2ay—6az)
=((Bax+ 15az)—(bax+2ay—6az)
~ 54 —B=-2ay+2laz
(c) The component of A along ay is A, =0
(d)LetC =34 +B=3(ax+3az)+ (Bax+2ay—6az)=8ax+2ay+3az

C 8ax+2ay+3az
|C]| V64 +4+9
H.W 5: Given points M(-1,2,1), N(3,-3,0) and P(-2,-3,-4), find:

ac = = 0.9117 ax + 0.2279 ay + 0.3419 az

(@) Ty 5 (B) Ty + Tmp s (©) Tyl s (d) Gy, 5 (€) |27 — 3 7yl

Ans.:4ax—5ay—az;3ax—10ay—6az;245;—-014ax—0.7ay—0.7az;
15.56

H.W 6: Express the unit vector directed toward the point P(1,-2,3) from an arbitrary
point on the line described by x = =3,y = 1.

4ax —3ay + (3 —z)az
Ans.:
25+ (3 —2)?

15
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1.5.2 Circular Cylindrical Coordinates:

The circular cylindrical coordinates system is very convenient whenever we are dealing
with problems having cylindrical symmetry. A point P in cylindrical coordinates is
represented as (7, ¢, z) and is as shown in Fig. 1.12. r is the radius of the cylinder passing
through P or the radial distance from the z-axis; ¢ is the angle measured from the x-axis
in the xy-plane; and z is the same as in the Cartesian system. The ranges of the variables
are:

0<7r< 00 2r,—00<z< 00

Intersection of three surfaces defined by r = constant, ¢) = constant and z = constant is
also a point in cylindrical coordinates, and is as shown in Fig. 1.12.

Plane of constant z

Plane of
constant ¢

Cylinder of
constant r

(@

Fig. 1.12 Cylindrical coordinate system.
A vector A in cylindrical coordinates can be written as A = A,.a, + Agay + A,a,
where @, , @y and @, are unit vectors in the r—, ¢ — and z —directions.

The magnitude of A is:

14| = \/Arz + 445+ A,°

16
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Notice that the unit vectors a, , dg and a, are mutually perpendicular because our
coordinates system is orthogonal; @, points in the direction of increasing r, @y points in
the direction of increasing ¢, and a, in the positive z-direction. Thus,

.8, = Gy.0p = a,.0, = 1
.8y = ap.8; = ;.8 =0
G, X Ty = Gy X Gy =y X Ty =0

ar X Ay =0y ; Ay X A, = ar; A, X A = Ay , see Fig. 1.6 with replacing (a, , a, ,a,)
with (@, ,dg ,a,)

If A= A,a, +Apa, + A,a, and B = B,a, + Byay + B,a, , then:

AB=A,B.+AyBy+A,B,

And
a a, az
14_ X EZ Ar A¢ AZ
B, By B,

Differential Length, Area, and Volume in Cylindrical Coordinates:

From Fig. 1.13, we notice that:
(1) Differential length is given by:

dL = drar +rd¢ a¢ +dz az, Vector Quantity

dL = \/dr? + (rd¢)? + dz?, Scalar Quantity
(2) Differential normal area is given by:
ds =rd¢dzar
=drdz ag,

=rdrd¢ az Vector Quantity

17
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(3) Differential volume is given by:

dV =rdrd¢g dz, Scalar Quantity

dz (,/S: =Zrdr a’q’)

dsg = O dr dz
dVv =rdrdp dz

ds, =trdp dz

"
* dOM’(P

Fig. 1.13 Differential quantities in the cylindrical system.

The relationship between the variables (x ,y, z) of the Cartesian coordinates and those of
the cylindrical system (7, ¢, z) are illustrated in Fig. 1.14, and given by:

1- From Cartesian To Cylindrical:

X=71 cose aing

=r sin¢p g T \
y ¢ o
z=12z

2- From Cylindrical To Cartesian:

r=x%+y? %
¢ =tan"12

Fig. 1.14 The relationship between (x,y, 2)
Z=2Z and (r,¢,2).

The dot product between (a, , a, ,a,) and (a,,ay ,a,) are obtained geometrically from
Fig. 1.15:

18
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a,.a, = cos¢ ay.a, = cos(90° — ¢) = sin¢
dy.ay = — cos(90° — ¢) = —sin¢ ay.dg = Cos¢
ay.0, =0 a,.a, =0
Thus:
a, = cosp a, — sing ay a, = cos¢a, + sing a,
a, = sing a, + cos¢ ay as = —singpa, + cos¢ a,
a, = a, a, = a,
a = 900 - ¢ sy
C_ly
ay ar
¢ la
¢ _
ax
a
Fig. 1.15 Relationship between unit vectors of
Cartesian and cylindrical coordinates. —%
f a=90" —¢

The vector A = A, ax + A, ay + A, az canbe transformed into cylindrical coordinates
as:

A, =Aa, =(Acax+ A, ay+ A, az).a, = A, cos¢ + Ay, sing
Ay =A.ay, =(Ayax+A, ay+ A, az).a, = —A, sing + A, cos ¢
A, =Aa,=(Acax+A, ay+ A, az).a, =4,

The vector A = A,.a, + Agay + A,a, can be transformed into Cartesian coordinates as:

o
R

Il
|
Ql

x = (Ardr + Apayp + Azdz).ax = A, cos¢p — Agsing

A.

e
Il

<
QI

y = (Ardr + Apay + Azaz). a, = A,sin¢ + Ay cos ¢

A, =A.a, = (Aa, + Apay + A,a,).a, = A,

19
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Example 7: -

(a) Transform the vector B = yax — xay + zaz into cylindrical coordinates.
(b) Express the vector filed S = cos ¢ @, + sin ¢ ag in Cartesian cc_)ordinates.
(c) Find at P(1, 2, -2) the vector projection of B in the direction of S.

Solution:

(a) B, = B.a, = (yax —xay + zaz).a, =y cos¢ — x sin¢
v x=rcos¢p andy = r sing

B, =71 sin¢ cos¢p —r cos¢p singp =0

By = B.dy = (yax — xay + zaz).a, = —y sin¢ — x cos ¢
~ By =—rsin®*¢ —rcos’¢p = —r

B, =B.a, = (yax —xay + zaz).a, = z

“ B=-—-r ag + z a, in cylindrical coordinates

(b)Sy =S.a, = (cos¢ a, +sing ay).a, = cos? p —sin? ¢

X X : y Y

a COS¢:_=—; Sln¢=—=—
xZ 2 x2_ 2

.5 = y*  _x*-y

x2+y2_x2+y2 T X2+ y?
Sy =§.ay = (cosd)dr +sin¢a¢).dy = cos¢ sing + sin¢ cosp = 2 cos ¢ sin ¢p

X y 2xy
" Sy =2 =22 1 2
JxZ+y2 x2+y2 X5ty

S, =S.a,=(cos¢a, +singay).a,=0
x*—y*_ 2xy  _
=x2+y2ax+x2 +yzay

in Cartesian Coordinates

%]

20
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(c) *B = yax —xay + zaz

~ B = 2ax—ay— 2az

o xP—yt 2xy  _
-S=x2+y2ax x2_|_y2ay

_ 1-4 2(D)(2) _ B B
.-.S=1+4ax+ 1+ 4 a, = —0.6a, + 0.8a,
= _E.S_'_
o Bs = (B.as)as = WS

5 (2ax — ay — 2az).(—0.6a,
s (0.62 + 0.82)

_ —-12-038
By = ———
H.W 7: Transform

+0.8a
%) (—0.6a, + 0.8a,)

(-0.6a, + 0.8a,) = 1.2a, + 1.6a,

—xya, + x*a, + y*a,

A=
x% + y?

from Cartesian to cylindrical coordinates.

Ans.: A = cos pay +sin® ¢ a,
H.W 8: Express the field E = sin ¢@, + cos? ¢ a, In Cartesian coordinates.

_  «xya, +vy?a, +x%a
Ans.:Ezyx 2] yz z
x“+y

H.W 9: Decompose the vector A = 2a, — a, + 5a, into vectors parallel and

perpendicular to the cylinder r = 1 at point P(1,30°, 0).

Ans.: Ar = —1.866a, + 5a, and Ay = 1.232a,

21
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1.5.3 Spherical Coordinates System:

The spherical coordinates system is most appropriate when dealing with problems having
of spherical symmetry. A point P can be represented as P(r,0,¢) and illustrated in
Fig. 1.16a, R is defined as the distance from the origin to point P or the radius of sphere
centered at the origin and passing through P; 6 is the angle between the z-axis and the
position vector of P; ¢ is measured from the x-axis (¢ is the same as in the cylindrical
coordinates). According to these definitions, the ranges of the variables are:

0<SR< 0,0<0<m,0<¢p<2m

Intersection of three orthogonal surfaces defined by R = constant, 8 = constant and
¢ = constant is also a point in spherical coordinates, and is shown in Fig. 1.16b.

¢ = constant

0 = constant

/'-.I r = constant
I:. -,I \

x

Fig. 1.16 (b) Point P as intersection of three
surfaces.

Fig. 1.16 (a) The three spherical
coordinates.

A vector A in spherical coordinates can be written as:

/T = ARC_lR + AQC_lg + A¢C_l¢,

22
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where ag, ag , @y are unit vectors along the R—, 60—, and ¢ — directions as illustrated in

Fig. 1.17 the magnitude of A is:

|A| = \/ARZ +Ag” + Ay’

The unit vectors ag , dg and ag are mutually
orthogonal; a, being directed along the radius
or points in the direction of increasing r, Gy
points in the direction of increasing 6, and ag

in the direction of increasing ¢. Thus,

dR.dR = 69.(79 - d¢ﬁ¢ - 1

dR.dg = d@dd) = d(j)dR == 0

Fig. 1.17 The three unit vectors
ap X dg =0g X Ag = Ay Xagp =0 for spherical coordinates.

g X Qg =0y ; Qg X Ay = Ag; Ay X Qg = Qg , see Fig. 1.12 with replacing
(ay,ay ,a,) with (ag,ag,dg).
If /T = ARar + Agag + A¢d¢ andE = BRdR + Bgag + B¢a¢ ) then:

/TE =AR BR +A9 Bg +A¢ B(p

and
ap Qg d¢
/T X E = A-r- Ag A(p
B, By By

23
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Differential Length, Area, and Volume in Cylindrical Coordinates:

From Fig. 1.18, we notice that:
(1) Differential length is given by:
dL = dR aR + Rdfaf + Rsinf8d¢ ag, Vector Quantity

dL = \/dR% + (Rd6)% + (Rsin d¢)?, Scalar Quantity
(2) Differential normal area is given by (Fig.1.19):
ds = R?*sin6d6@ d¢ ar
= Rsin0dR d¢ al, Vector Quantity
= RdR df a¢

(3) Differential volume is given by:

dV =R%sinfdrdfde , Scalar Quantity

z
A

R sin 0 d¢

Fig. 1.18 Differential elements in spherical coordinates.
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i r sinl) dé

r sin0 d¢ 3

L
r dr
rdi} dr
- rdi
ay *

Fig. 1.19 Differential normal areas in spherical coordinates.

The space variables (x,y,z) of the Cartesian coordinates can be related to variables
(R, 0, ¢) of a spherical coordinates system. From Fig. 1.20, it is easy to notice that:

1- From Cartesian To Spherical:

X =R sinf cos ¢
y =R sin@sin ¢
Z=R cos@

2- From Spherical To Cartesian

R =/x2+y2 + z2

xZ + 2
0 = tan~?! Y

¢ = tan~?

xR I
N

p=rsin @

P, y.2)=FP(r, 8, ) =P(p. &, )

z=rcos @

Fig. 1.20 Relationships between space variables
(x,y,z) and (r,0,9).

The dot product between (ay , a, ,a,) and (ag,ag ,ag) are obtained geometrically from

Fig. 1.21:

ay.0g = Ay.(cos(90 — B)a, + cosb a,) = a,.(sinb a, + cosb a,) = sinf cos ¢
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ay.Ap = —sing

ay.ag = cos¢

y-agr = Qy.(sinf a, + cosf a,) = sinf sin¢

y-ag = @y.(cosB a, —sinf a,) = cosOsin¢

a,.ag = a,.(sinf a, + cosfa,) = cosb

a,
- aﬁ aR
p|e
B _
0 r
ag
f=90"—9

a,.ag = a,.(cosfa, — cos(90 —0) a,) = a,.(cos@ a, —sinb a,) = cos O cos ¢

v

a,.dg = a,.(cosfa, —sinfa,) =—sinb
'Y B 47
ay
a, a,
b |«
¢ a
a X
—ay
) 6
A a=90 —¢ |
> X

Fig. 1.21 Relationship between the unit vectors of three coordinate systems.

The vector A = A, ax + A, ay + A, az can be transformed into spherical coordinates

as:

Ap=A.ay = (Ayax + A, ay + A, az).a,
= Ay sinf cos¢ + A, sinfsin¢g + A, cosb

Ag=A.ag = (A ax+ A, ay + A, az).a,
= Ay cosfcos¢p + Ay, cosfsing — A, sinb
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Ay =A.ay,=(Ayax+A, ay+ A, az).a, = —A, sing + A, cos ¢
The vector A = Apay + Agpagy + A,a, can be transformed into Cartesian coordinates as:

A, = A.

Q|

» = (ArGg + Aglp + Aply). Oy
= Apsinf cos ¢ + Ag cos b cosp — Ay sin @

0
Il

y = A.a, = (Arag + Aglg + Apdy).a,
= Apsinfsin¢ + Ag cosOsing + Ay cos ¢

A, =A.a, = (Agag + Aply + Apay).a, = Az cos 0 — Ay sinf

Example 8: -
A vector field is given by:

D = yxityr 2t [(x —y)a, + (x + y)a, ]

NS

Express this field in spherical coordinates.

Solution:

R=\/x2+y2+22, r =Rsinf = ./x2 + y?

X =R sinfcos¢ , y=R sinfsing

~ D=

Y [(R sinf cosp — R sin@sin¢)a,

+ (R sin@ cos¢ + R sinfsing)a, |
~ D =R[(cos ¢ —sinp)a, + (cos ¢ + sinp)a, |
D, = D.ag = R[(cos ¢ — singp)a, + (cos ¢ + sinp)a, |. az
= R[(cos ¢ — sin ¢) sin @ cos ¢ + (cos ¢ + sin ¢) sin 6 sin p]
= Rsin @ [cos? ¢ — sin ¢ cos ¢ + cos ¢ sin ¢ + sin? ] = Rsin 6

~ D, =Rsinf
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Dy = D.ay = R[(cos ¢ — sin$)a, + (cos ¢ + sinp)a, |. ag
= R[(cos ¢ — sin¢) cos 6 cos ¢ + (cos ¢ + sin ¢) cos O sin @]
= R cos B [cos? ¢ — sin¢p cos ¢ + cos ¢ sin ¢ + sin® ¢p] = R cos O
~ Dg = Rcos@
Dy =D.ay = R|[(cos ¢ — singp)a, + (cos¢ + sinp)a, |- a
= R[—(cos ¢ — sin¢) sin ¢ + (cos ¢ + sin ¢) cos ¢]
= R[—cos ¢ sin ¢ + sin® ¢ + cos? ¢ + sin¢ cosp] =R
~ Dy =R
~ D =Rsin@ag + R cosf ay + Ray,

Example 9: -

Given vectors A = 2a, — a, + 5a, and B = 4ay , find the angle between A and B at
P(1, 15°, 50°).

Solution:

B, = B.a, = 4dg.a, = 4 cosf cos ¢
B, = B.a, = 4ay.a@, = 4 cos 6 sin ¢
B, =B.a, = 4dg.a, = —4 sin 0

~B =4 cosfcospa,+ 4 cosfsingpa, —4sind a,
At P(1, 15°, 50°),

B

2.4835a, + 2.9597a, — 1.0352 @,

A.B = (2a, —a, + 5a,) .( 2.4835a, + 2.9597a, — 1.0352 a,) = —3.1687

|A| = /22 + 12452 = 5.4772 and | B| = 4

+ A.B = |A||B] cos 8,5
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1 —3.1687 3 {01446

] = cos™ [y og| = cos 01446
v G4 = 98.31°
Example 10: -

A spherical region is defined by: 1 < R < 3,15° <6 < 60°,and 10° < ¢ < 80°

Find the volume V.
Solution:
0°  60° (3
ﬂfdv—f f f R?sin6dR dO d¢ = f <—> sin@ do d¢
$=10°J0=15°Jr=1 $=10°Jo=
80° 80° 60° 80°
j j —sm@ dode = ?(—cos 0),.- dop = 4.038f do
$=10°Jo= $=10° $=10°

= 4.038 (¢)|39 = 4.038 (80 — 10) * — = 4.9333 Unit3

180

Example 11: -
Find the area of the surface defined by:

6 = 45°, 3<R<S5 and 0.ln<¢p<m

Solution:

¢=0.1m r=

™5
=.£ ds=¢ Jlnrfg(dR)(RsmH do) = f fRsm45 dr d¢ =

1 (25—9

-2 R = 0.97) = 15.9943 Unit?
_E<7>3(¢)0'1n_\/_§ 3 )(.n)— : nit
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H.W 10: Find the angle between vector A = @, + 3a, + 2a, and the sphere R= 1 at the
point P(1,20°, 30°).
Ans.: 45°93

H.W 11: Prove that the field A = sin 8 @y in Cartesian coordinates is given by:
i xz@, + yza, — (x* + y?*)a,
B x?% 4+ y24+z2

H.W 12: Obtain the expression for the volume of a sphere of radius a [m] from the

differential volume.

4
Ans.: V = gna3

H.W 13: Use the spherical coordinates system to find the area
of the strip @ < 8 < [ on the spherical shell of radius a [m]
(Figure below). What results when @ = 0, and [ = &.

Ans.: 2ma? (cosa — cos ) and 4ma?

-
/

1.6 Integration of Vector Functions:

1.6.1 Line Integral:

Consider a vector field A as shown in Fig. 1.22 and an arbitrary path C. The line integral
of the vector A over the path C is written as:

Q=/[ Adl=[ [|Alldl|cosb;z
fp”: A.dl= fp”f | A||dl| cos 05

closed contour integral or a loop integral

[ A.dl= [ |A||dl|cos bz

jé A-dl= 7€ | Al|d1| cos 655
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Fig, 1.22 The line integral. (a) Open contour integration. (b) Closed

1.6.2 Surface Integral

The surface integral of a vector is the flux (flow) of this vector through the surface. The
surface integral is also written as:

=)

Q=/[ A-ds

where ds = dsa,, and where a,,is the unit vector C
normal to surface S.

If this surface is a closed surface, integration

becomes as a closed surface integration:
Surface Integral

Q=¢ A-ds
Closed surface integration gives the total or net flux through a closed surface.
1.6.3 Volume Integral

The volume integral of a vector field is a vector and is written as
P=[ pdv
In Cartesian coordinates,
P=[ pedvax+[ pydvay+ [ pydvaz

This type of vector integral is often called a regular or ordinary vector integral because it
is essentially a scalar integral with the unit vectors added.
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1.6 Del Operator and Gradient:

The del operator, written V, is the vector differential operator. In Cartesian coordinates,

a _ a _ 9 _
V=—a —a —a
dx X+ay vyt 5, %

This vector differential operator, otherwise known as the gradient operator, when it
operates on a scalar function. The operator is useful in defining:

1. The gradient of a scalar V, written. as V'V

2. The divergence of a vector A, writtenas V7 - A
3. The curl of a vector 4, written as V X A

4. The Laplacian of a scalar V, written as V2V

The gradient of a scalar function gives both the magnitude and direction of the maximum
spatial rate of change of the scalar function.

In Cartesian coordinates, the gradient of a scalar ﬁmction is written as
grad U=VU = (— ax + —ay + aZ)U

and is read as grad U or del U.
The gradient has the following general properties:

> It operates on a scalar function and results in a vector function.
> The gradient is normal to a constant value surface.
> The gradient always points in the direction of maximum change in the scalar

function.

for cylindrical coordinates,

ov_ 1oV _ adV
VW =—a, +—-

r%a(p +5az
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and for spherical coordinates,

LA VA W
dR™® " R30% " Rsingagp

Example 12: Find the gradient of the following scalar fields:
(@) V = e #sin 2x cosh y

(b) U = 1%z cos 2¢

(c) W = 10Rsin?6 cos ¢

Solution:

av _ ov _

av _
(a) VV =55 %« +an +£CLZ

= 2e” 7 cos 2x cosh yay + e™7 sin 2x sinh ya, — e™” sin 2x cosh ya,

U _ | 10U _
(b) VU = ar + 20 Cl¢ +
= 21z cos 2¢a, — 2rzsin 2¢ay + r’cos2¢a,
ow _ 10w _ 1w _

() VW = Fpar + 555 86 Rsin® 0 O

= 10sin®0 cos ¢pai + 10 sin 26 cos ¢pag — 10 sin O sin Pay

1.7 Divergence and Divergence Theorem:

The divergence of A at a given point P is the outward flux per unit volume as the volume
shrinks about P.

divA=V- A= llm95 Ads

AV—0 Av

where Av is the volume enclosed by the closed surface S in which P is located.
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i~ T L s 4T ! § 4r

NN
N

(b) ()

Fig. 1.23. Illustration of the divergence of a vector field at P; (a) positive divergence, (b)
negative divergence, (c¢) zero divergence.

The divergence in different coordinate systems can be written as:

_ )
v.4=24x %% , 04 Cartesian
ox dy 0z
_ 94
V-A= ——( Ay) + la_qu Cylindrical
v-Ad=-2(R%A,) + 2 (Ag sin ) + — %49 Spherical
R26R R} T Rsingog V'O Rsinf d¢

Note the following properties of the divergence of a vector field:
1. It produces a scalar field.

2. The divergence of a scalar V, divV, makes no sense.
3.3V-(A+B)=V-A+V-B

4.V- (VA =VV-A+ATVV

The divergence theorem follows from the definition of the divergence, stating that the

volume integral of V - A over a volume is equal to the closed surface integral of A over
the surface bounding the volume. The divergence theorem is expressed as

J, V-Adv=¢ A-ds
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where S is the bounding surface of the volume V, and ds is the differential area vector on
S, which is always directed out of the enclosed volume.

Its most important use is the conversion of volume integrals of the divergence of a vector
field into closed surface integrals.

Example 13 :- Find the divergence of the position vector to an arbitrary point.
Solution :
We will find the solution in Cartesian as well as in spherical coordinates.
a) Cartesian coordinates. The expression for the position vector to an arbitrary
point (x,y,z) is

OP = xa, + ya, + za,

Then

6y 0z

ax
V- (OP) = ay + — az

b) Spherical coordinates. Here the position vector is simply
OP = ra,

Its divergence in spherical coordinates (7, 8, ¢) can be obtained by

v-A=22@r24,) + L ¢

rsinf d¢

rsin 6 06 (A9 sin 6) +

Hence, V - (ﬁ’)) = 3, as expected.

Example 14:- Given A = x%a; + xy a, + yz a,, verify the divergence theorem over a

cube one unit on each side. The cube is situated in the first octant of the Cartesian
coordinate system with one corner at the origin.

Solution: We first evaluate the surface integral over the six faces.

1. Front face: x = 1, ds = dydz a;

N - 1 1
ffrontfaceA -ds = fO fO dde = 1.
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2. Back face: x = 0,ds = — dydz ax;

»]back face

3. Left face: y = 0, ds = —aydx dz;

.ds =0

o

fleftfaceA +ds = 0.

4. Right face: y = 1, ds = dxdz a@;
S — 1,1 1
frightfaceA rds = fO fO x dxdz = 2
5. Top face: z = 1, ds = dxdy a;
S — 1 .1 1
ftopfaceA rds = fo J-0 ydxdy - 2

6. Bottom face: z = 0, ds = —dxdyaz;

j A-ds=0
bottom face

Adding the above six values, we have

1 1
fA.dS=1+O+O+E+E+0=2
S

Now the divergence of A is
7.A=2(x?)+2 (xy) + 2 (yz) = 3x +
) ox oy y 0z y Y
Hence,

J, V-Adv= f01 fol f01(3x + y)dxdydz = 2
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1.8 Curl :

The curl of A is the circulation of the vector A per unit area, as this area tends to zero and
is in the direction normal to the area when the area is oriented such that the circulation is
maximum. The curl of a vector field is, therefore, a vector field, defined at any point in
space.

More accurately, we define the curl using the following relation:

curl A = Vx4 = Al;r—{lOE an95 A - d?f] max

The common notation for the curl of a vector A is V X A (read: del cross A), and it can be
written in Cartesian coordinates as:

?
VxA_(aﬁ—ﬂ)a +(aﬂ_%)— __a_“;:f az

The properties of the curl are:
(1) The curl of a vector field is a vector field.
(2) The magnitude of the curl gives the maximum circulation of the vector per unit area at
a point.
(3) The direction of the curl is along the normal to the area of maximum circulation at a
point.
(4) The curl has the general properties of the vector product: it is distributive but not
associative

VX(A+B)=VXA+VxBandV X (AxB)+# (VXA)XB
(5) The divergence of the curl of any vector function is identically zero:

V- (VXA =0
(6) The curl of the gradient of a scalar function is also identically zero for any scalar:
Vx (VV) =0
For cylindrical coordinate,
a, asr a,
- 1|0 d ]
VxA= “lor 0 ozl
A, ThAy A,
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For spherical coordinate,

aR ng 6¢R sin 6
T 1 0 0 0
VxA= R2sin@ |aR 26 %
AR RAQ R sin QAQ)

1.9 Stokes’s theorem:

The Stokes’s theorem follows from the definition of the curl, stating that the surface
integral of V X A over an open surface is equal to the closed line integral of A around the
loop bounding the surface. The Stokes’s theorem is expressed as

J, 7 xA)-ds=¢ A.dl

Stokes’ theorem. (a) Vector field A and an open surface s. (b) The only
components of the contour integrals on the small loops that do not cancel are
along the outer contour L

Example 15:- Given F = G, xy — a, 2x, verify Stokes’s theorem over a quarter-circular
disk with a radius 3 in the first quadrant.

Solution Let us first find the surface integral of VxF
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‘_;x ‘_;y C_; va
VxF = a 5 Z =—aZ(2+x). B
xy —2x 0
[ (vxF)-ds = [ [ (vxF) . @, dx dy) re
¢
3 1/9_y2 o Y] —» X
=f [f — (2 + x)dx]|dy
o Jo
3 1
= —f [2V9 = y2 +5(9—y")ldy
0
Y9y
= —[yy/9 — y? + 9sin 1§+§y—z]g

= —9(1+7).
For the line integral around ABOA

From A to B: ff F-dt= fon/z — 3(9sin?¢ cos ¢ + 6cos?p)dg

_ .3 . /2 _ n
= ~9(sin’p + ¢ + sin ¢ cos P> = ~9(1 + ),

FromBto 0:x = 0,and F - d¢ = F - (—a,dy) = 2xdy = 0.

From O to A:y = 0,and F - d¢ = F - (a,dx) = xydx = 0. Hence,

= 3 Bs 7 n
SEABOAF-d{’=fAF-d€= —9(1+;)

Stokes's theorem is verified.
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The Helmholtz Theorem

The Helmholtz theorem states: “A vector field is uniquely defined by specifying its
divergence and its curl.” The Helmholtz theorem is normally written as

B=-VU+4+VXxA

where U i1s a scalar field and A is a vector field. That is, any vector field can be decomposed
into two terms; one is the gradient of a scalar function and the other is the curl of a vector
function.
Divergenceless field is called solenoidal and a curl-free field is called irrotational. We may
classify vector fields in accordance with their being solenoidal and/or irrotational. A vector
field A is: -
1). Solenoidal and irrotational if
V-A=0and Vx4 = 0.
Ex: A static electric field in a charge-free region.
2). Solenoidal but not irrotational if
V-A=0andVxA4 # 0.
Ex: A steady magnetic field in a current-carrying conductor.
3). Irrotational but not solenoidal if
VxA=0andV -A # 0.
Ex: A static electric field in a charged region.
4). Neither solenoidal nor irrotational if
V-A=+0andVxA4 # 0.
Ex: An electric field in a charged medium with a time-varying magnetic field.

Examplel6: Given a vector function F =a,(3y—c¢;z)+a,(c,x —2z)
—a,(c3y + z) . Determine the constants ¢y, ¢,, and ¢; if F is irrotational.
Solution

For F to be irrotational, VxF = 0; that is,

a, a, a,
o 0 9 09
Vxk = 0x dy 0z
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= ay(—c3 +2) —a,c; +a,(c; —3)=0.
Each component of VxF must vanish. Hence ¢; = 0, ¢, = 3, and ¢3 = 2.

H.W 14. Determine the scalar potential function V whose negative gradient equals F.
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