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1.1  Scalars and Vectors:  

A scalar is a quantity that has only magnitude. Quantities such as time, mass, distance, 

temperature, entropy, electric potential and population are scalars. Symbolically, a scalar 

is represented by either lower or upper case letters.  

A vector is described by two quantities: a magnitude and a direction in space at any 

point and for any given time. Therefore, vectors may be space and time dependent. Vector 

quantities include velocity, force, displacement and electric field intensity.    

Graphically, a vector is represented by directed line segment in the direction of the 

vector with its length proportional to its magnitude. Symbolically, a vector is represented 

by placing a bar over the letter symbol used for a given quantity, such as 𝐴𝐴 �𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵�, or by a 

letter in boldface type such as 𝑨𝑨 and 𝑩𝑩.  

1.2  Vector Addition and Subtraction: 

Two vectors 𝐴𝐴 �𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵� can be added (subtracted) together to give another vector 𝐶𝐶 � ( 𝐷𝐷�);  

i.e., 𝐶𝐶̅ = 𝐴𝐴 � + 𝐵𝐵�; 𝐷𝐷� = 𝐴𝐴 � − 𝐵𝐵� =  𝐴𝐴 � + (−𝐵𝐵�).  

Graphically, vector addition and subtraction are obtained by either the parallelogram rule 

or the head to tail rule as portrayed in Fig. 1.1 and 1.2, respectively.  
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The three basic laws of algebra obeyed by any given vectors 𝐴𝐴 � ,𝐵𝐵�  𝑎𝑎𝑎𝑎𝑎𝑎  𝐶𝐶̅ are summarized 
as follows:  

Law Addition Multiplication 

Commutative  𝐴𝐴 � + 𝐵𝐵� =  𝐵𝐵� + 𝐴𝐴 �   𝑘𝑘 𝐴𝐴 � =  𝐴𝐴 �  𝑘𝑘 

Associative  𝐴𝐴 � + (𝐵𝐵� +  𝐶𝐶̅) = (𝐴𝐴 � + 𝐵𝐵�) + 𝐶𝐶̅  𝑘𝑘 (𝐿𝐿𝐴𝐴 � ) = (𝑘𝑘𝐿𝐿) 𝐴𝐴 �  

Distributive 𝑘𝑘 (𝐴𝐴 � + 𝐵𝐵�) =  𝑘𝑘𝐴𝐴 � + 𝑘𝑘𝐵𝐵�  

Where k and L are scalars.  

 

 

 

Fig. 1.1 Vector addition 𝐶𝐶̅ = 𝐴𝐴 � + 𝐵𝐵�  : (a) parallelogram rule, (b) head to tail rule 

 

 

Fig. 1.2 Vector subtraction  𝐷𝐷� = (�̅�𝐴 ) − 𝐵𝐵 � : (a) parallelogram rule, (b) head-to-tail 
rule. 
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1.3  Products of Vectors  

The multiplication of two vectors is called a product. two types of products based on the 
result obtained from the product. The first type is the scalar product. This is a product of 
two vectors which results in a scalar. The second is a vector product of two vectors, which 
results in a vector.  
1.3.1 The Dot Product:  

The dot product of two vectors �̅�𝐴 and 𝐵𝐵�  , written as �̅�𝐴 .  𝐵𝐵� , is defined geometrically as the 
product of the magnitude of �̅�𝐴 and 𝐵𝐵�  and the cosine of the smaller angle between them.  

Thus:  

�̅�𝐴 .  𝐵𝐵� =  |�̅�𝐴||𝐵𝐵�| cos𝜃𝜃𝐴𝐴𝐴𝐴 

If 𝐴𝐴 � =  𝐴𝐴𝑥𝑥 𝑎𝑎�𝑥𝑥 + 𝐴𝐴𝑦𝑦  𝑎𝑎�𝑦𝑦 + 𝐴𝐴𝑧𝑧 𝑎𝑎�𝑧𝑧 and 𝐵𝐵 � =  𝐵𝐵𝑥𝑥 𝑎𝑎�𝑥𝑥 + 𝐵𝐵𝑦𝑦  𝑎𝑎�𝑦𝑦 + 𝐵𝐵𝑧𝑧 𝑎𝑎�𝑧𝑧, then:  

𝐴𝐴 � .𝐵𝐵� =  𝐴𝐴𝑥𝑥  𝐵𝐵𝑥𝑥 + 𝐴𝐴𝑦𝑦 𝐵𝐵𝑦𝑦 + 𝐴𝐴𝑧𝑧 𝐵𝐵𝑧𝑧 

Notes:  

1- �̅�𝐴 .  𝐵𝐵� =  𝐵𝐵�  .  �̅�𝐴                          (Commutative Law)  
2- �̅�𝐴 . (𝐵𝐵� + 𝐶𝐶̅) =  �̅�𝐴.𝐵𝐵� + �̅�𝐴.𝐶𝐶̅      (Distributive Law) 
3- �̅�𝐴 .  �̅�𝐴 =  |�̅�𝐴|2 
4- 𝑎𝑎�𝑥𝑥. 𝑎𝑎�𝑦𝑦 = 𝑎𝑎�𝑦𝑦.𝑎𝑎�𝑧𝑧 = 𝑎𝑎�𝑥𝑥.𝑎𝑎�𝑧𝑧 = 0  and 𝑎𝑎�𝑥𝑥.𝑎𝑎�𝑥𝑥 = 𝑎𝑎�𝑦𝑦.𝑎𝑎�𝑦𝑦 = 𝑎𝑎�𝑧𝑧. 𝑎𝑎�𝑧𝑧 = 1 

A direct application of dot product is its use in determining the projection (or Component) 
of a vector in a given direction. The projection can be scalar or vector. Given a vector �̅�𝐴 , 
we define the scalar projection 𝐴𝐴𝐴𝐴 of �̅�𝐴 along 𝐵𝐵�  as [see Fig. 1.3a] 

𝐴𝐴𝐴𝐴 =  |�̅�𝐴| cos𝜃𝜃𝐴𝐴𝐴𝐴 =  |�̅�𝐴||𝑎𝑎�𝐴𝐴|  cos𝜃𝜃𝐴𝐴𝐴𝐴 

Or  𝐴𝐴𝐴𝐴 =  �̅�𝐴 .𝑎𝑎�𝐴𝐴  

The vector projection �̅�𝐴𝐴𝐴 of �̅�𝐴 along 𝐵𝐵�  is simply the scalar projection 𝐴𝐴𝐴𝐴 multiplied by a 

unit vector along  𝐵𝐵� ; is:  

�̅�𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴  𝑎𝑎�𝐴𝐴 = (�̅�𝐴 .𝑎𝑎�𝐴𝐴) 𝑎𝑎�𝐴𝐴 
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Both the scalar and vector projections of �̅�𝐴 are illustrated in Fig. 1.3.  

 

Fig. 1.3 Components of �̅�𝐴  along 𝐵𝐵� : (a) scalar component 𝐴𝐴𝐴𝐴 ; (b) vector component �̅�𝐴𝐴𝐴. 

Example 1: -  

Given vectors 𝐴𝐴 � =  3𝑎𝑎�𝑥𝑥 + 4𝑎𝑎�𝑦𝑦 + 𝑎𝑎�𝑧𝑧 and 𝐵𝐵 � =  2𝑎𝑎�𝑦𝑦 − 5𝑎𝑎�𝑧𝑧 . Find: (a) �̅�𝐴 .  𝐵𝐵�  ; (b) 𝜃𝜃𝐴𝐴𝐴𝐴 ;  
(c) The scalar component of �̅�𝐴 along 𝐵𝐵�  ; (d) The vector projection of �̅�𝐴 along 𝐵𝐵�  .  

Solution: 

(a) �̅�𝐴 .  𝐵𝐵� = (3𝑎𝑎�𝑥𝑥 + 4𝑎𝑎�𝑦𝑦 + 𝑎𝑎�𝑧𝑧).(2𝑎𝑎�𝑥𝑥 − 5𝑎𝑎�𝑧𝑧) = 3(0) + 4(2) + 1(−5) = 3 

(b) |�̅�𝐴| =  √9 + 16 + 1 =  √26    and |𝐵𝐵�| =  √0 + 4 + 25 =  √29 

�̅�𝐴 .  𝐵𝐵� =  |�̅�𝐴||𝐵𝐵�| cos𝜃𝜃𝐴𝐴𝐴𝐴   ⟹  cos𝜃𝜃𝐴𝐴𝐴𝐴 =
�̅�𝐴 .  𝐵𝐵�

|�̅�𝐴||𝐵𝐵�| 
=

3
√26√29 

= 0.1092 

∴  𝜃𝜃𝐴𝐴𝐴𝐴 = cos−1(0.1092) = 83.73° 

(c)   𝐴𝐴𝐴𝐴 = �̅�𝐴 .𝑎𝑎�𝐴𝐴 =
�̅�𝐴 .  𝐵𝐵�
|𝐵𝐵�| 

=  
3
√29

= 0.557 

(d)   �̅�𝐴𝐴𝐴 = (�̅�𝐴 .𝑎𝑎�𝐴𝐴) 𝑎𝑎�𝐴𝐴 = 0.557 𝑎𝑎�𝐴𝐴 =  0.557 
𝐵𝐵�

|𝐵𝐵�| =  
0.557 (2𝑎𝑎�𝑥𝑥 − 5𝑎𝑎�𝑧𝑧)

√29
 

�̅�𝐴𝐴𝐴 =  0.207𝑎𝑎�𝑥𝑥 − 0.517𝑎𝑎�𝑧𝑧 
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H.W 1: 

Decompose the vector 𝐴𝐴 � =  −2𝑎𝑎�𝑥𝑥 + 3𝑎𝑎�𝑦𝑦 + 5𝑎𝑎�𝑧𝑧 on to vectors parallel and perpendicular 
to the vector 𝐵𝐵 � = 𝑎𝑎�𝑥𝑥 − 2𝑎𝑎�𝑦𝑦 − 2𝑎𝑎�𝑧𝑧.   

Ans.:      −2𝑎𝑎�𝑥𝑥 + 4𝑎𝑎�𝑦𝑦 + 4𝑎𝑎�𝑧𝑧 ;  −𝑎𝑎�𝑦𝑦 + 𝑎𝑎�𝑧𝑧 

1.3.2  The Cross Product:  

The cross product of two vectors �̅�𝐴 and 𝐵𝐵�  , written as �̅�𝐴  ×  𝐵𝐵� , is a vector quantity whose 
magnitude is the area of the parallelepiped formed by �̅�𝐴 and 𝐵𝐵�  (see Fig. 1.4) and is in the 
direction of advanced of right-handed screw as �̅�𝐴 is turned in to 𝐵𝐵� .  

Thus:    �̅�𝐴  ×  𝐵𝐵� =  |�̅�𝐴||𝐵𝐵�| sin𝜃𝜃𝐴𝐴𝐴𝐴  𝑎𝑎�𝑎𝑎 

Where 𝑎𝑎�𝑎𝑎 is a unit vector normal to the plane containing �̅�𝐴 and 𝐵𝐵�  . The direction of 𝑎𝑎�𝑎𝑎 is 
taken as the direction of the right thumb when the fingers of the right hand rotate from �̅�𝐴 
to 𝐵𝐵�  as shown in Fig. 1.5a. Alternatively, the direction of 𝑎𝑎�𝑎𝑎 is taken as that of the advance 
of a right-handed screw as �̅�𝐴 is turned into 𝐵𝐵�  as shown in Fig. 1.5b.  
If 𝐴𝐴 � =  𝐴𝐴𝑥𝑥 𝑎𝑎�𝑥𝑥 + 𝐴𝐴𝑦𝑦  𝑎𝑎�𝑦𝑦 + 𝐴𝐴𝑧𝑧 𝑎𝑎�𝑧𝑧 and 𝐵𝐵 � =  𝐵𝐵𝑥𝑥 𝑎𝑎�𝑥𝑥 + 𝐵𝐵𝑦𝑦  𝑎𝑎�𝑦𝑦 + 𝐵𝐵𝑧𝑧 𝑎𝑎�𝑧𝑧, then:  

 �̅�𝐴  ×  𝐵𝐵� =  �
𝑎𝑎�𝑥𝑥 𝑎𝑎�𝑦𝑦 𝑎𝑎�𝑧𝑧
𝐴𝐴𝑥𝑥 𝐴𝐴𝑦𝑦 𝐴𝐴𝑧𝑧
𝐵𝐵𝑥𝑥 𝐵𝐵𝑦𝑦 𝐵𝐵𝑧𝑧

� 

                = �𝐴𝐴𝑦𝑦𝐵𝐵𝑧𝑧 − 𝐵𝐵𝑦𝑦𝐴𝐴𝑧𝑧�𝑎𝑎�𝑥𝑥 − (𝐴𝐴𝑥𝑥𝐵𝐵𝑧𝑧-𝐴𝐴𝑧𝑧𝐵𝐵𝑥𝑥) 𝑎𝑎�𝑦𝑦 + �𝐴𝐴𝑥𝑥𝐵𝐵𝑦𝑦 − 𝐴𝐴𝑦𝑦𝐵𝐵𝑥𝑥�𝑎𝑎�𝑧𝑧 

 

 

Fig. 1.4 The cross product of �̅�𝐴 and 𝐵𝐵�  is a 
vector with magnitude equal to the area of 
the parallelogram and direction as 
indicated. 
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Fig. 1.5: Direction of �̅�𝐴  ×  𝐵𝐵�  and 𝑎𝑎�𝑎𝑎 using:  (a) right-hand rule, (b) right-handed screw 
rule. 

Notes:  

1- �̅�𝐴  ×   𝐵𝐵� ≠  𝐵𝐵�  ×   �̅�𝐴                                            (it is not commutative)  

�̅�𝐴  ×   𝐵𝐵� = − 𝐵𝐵�  ×   �̅�𝐴                                        (it is anti-commutative)    

2- �̅�𝐴  × (𝐵𝐵� × 𝐶𝐶̅) ≠ (�̅�𝐴 × 𝐵𝐵�) × 𝐶𝐶̅                         (It is not associative) 
3- �̅�𝐴  × (𝐵𝐵� + 𝐶𝐶̅) =  �̅�𝐴 × 𝐵𝐵� +  �̅�𝐴 × 𝐶𝐶̅                   (It is distributive)  
4- �̅�𝐴  ×  �̅�𝐴 =  0 
5- 𝑎𝑎�𝑥𝑥 × 𝑎𝑎�𝑦𝑦 = 𝑎𝑎�𝑧𝑧 ;  𝑎𝑎�𝑦𝑦 × 𝑎𝑎�𝑧𝑧 = 𝑎𝑎�𝑥𝑥 ;  𝑎𝑎�𝑥𝑥 × 𝑎𝑎�𝑧𝑧 = 𝑎𝑎�𝑦𝑦 
6- 𝑎𝑎�𝑥𝑥 × 𝑎𝑎�𝑥𝑥 = 𝑎𝑎�𝑦𝑦 × 𝑎𝑎�𝑦𝑦 = 𝑎𝑎�𝑧𝑧 × 𝑎𝑎�𝑧𝑧 = 0 

 

 

 

 

Fig. 1.6 Cross product using cyclic permutation: (a) moving clockwise leads to positive 
results: (b) moving counterclockwise leads to negative results. 
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Example 2: -  

Points P1(1,2,3), P2(-5,2,0) and P3(2,7,-3) form a triangle in space. Calculate (a) The area 
of the triangle; (b) The unit vector perpendicular to the plane containing the triangle.  

Solution: 

�̅�𝑟𝑝𝑝1 =  𝑎𝑎�𝑥𝑥 + 2𝑎𝑎�𝑦𝑦 + 3𝑎𝑎�𝑧𝑧 ;   �̅�𝑟𝑝𝑝2 =  −5𝑎𝑎�𝑥𝑥 + 2𝑎𝑎�𝑦𝑦 and   �̅�𝑟𝑝𝑝3 =  2𝑎𝑎�𝑥𝑥 + 7𝑎𝑎�𝑦𝑦 − 3𝑎𝑎�𝑧𝑧 

(a)  �̅�𝑟𝑝𝑝1𝑝𝑝2 =  �̅�𝑟𝑝𝑝2 −  �̅�𝑟𝑝𝑝1 = −6𝑎𝑎�𝑥𝑥 − 3𝑎𝑎�𝑧𝑧 and �̅�𝑟𝑝𝑝1𝑝𝑝3 =  �̅�𝑟𝑝𝑝3 −  �̅�𝑟𝑝𝑝1 = 𝑎𝑎�𝑥𝑥 + 5𝑎𝑎�𝑦𝑦 − 6𝑎𝑎�𝑧𝑧 

�̅�𝑟𝑝𝑝1𝑝𝑝2  ×  �̅�𝑟𝑝𝑝1𝑝𝑝3 =  �
𝑎𝑎�𝑥𝑥 𝑎𝑎�𝑦𝑦 𝑎𝑎�𝑧𝑧
−6 0 −3
1 5 −6

�  = (0 + 15)𝑎𝑎�𝑥𝑥 − (36 + 3) 𝑎𝑎�𝑦𝑦 + (−30− 0)𝑎𝑎�𝑧𝑧 

�̅�𝑟𝑝𝑝1𝑝𝑝2  ×  �̅�𝑟𝑝𝑝1𝑝𝑝3 = 15𝑎𝑎�𝑥𝑥 − 39𝑎𝑎�𝑦𝑦 − 30𝑎𝑎�𝑧𝑧  

Area of the triangle = 1
2
��̅�𝑟𝑝𝑝1𝑝𝑝2  ×  �̅�𝑟𝑝𝑝1𝑝𝑝3� =  1

2
√152 + 392 + 302 = 25.72 

(b)  𝑎𝑎�𝑛𝑛  = ∓  
�̅�𝑟𝑝𝑝1𝑝𝑝2  ×  �̅�𝑟𝑝𝑝1𝑝𝑝3
��̅�𝑟𝑝𝑝1𝑝𝑝2  ×  �̅�𝑟𝑝𝑝1𝑝𝑝3�

= ∓  
15𝑎𝑎�𝑥𝑥 − 39𝑎𝑎�𝑦𝑦 − 30𝑎𝑎�𝑧𝑧 

51.44  

∴   𝑎𝑎�𝑛𝑛  = ∓(0.291𝑎𝑎�𝑥𝑥 − 0.758𝑎𝑎�𝑦𝑦 − 0.583𝑎𝑎�𝑧𝑧) 

Example 3: -  

The vertices of triangle are located at P1(4,1,-3), P2(-2,5,4) and P3(0,1,6). Find the three 
angles of the triangle.  

Solution: 

�̅�𝑟𝑝𝑝1 =  4𝑎𝑎�𝑥𝑥 + 𝑎𝑎�𝑦𝑦 − 3𝑎𝑎�𝑧𝑧 ; �̅�𝑟𝑝𝑝2 =  −2𝑎𝑎�𝑥𝑥 + 5𝑎𝑎�𝑦𝑦 + 4𝑎𝑎�𝑧𝑧  and  �̅�𝑟𝑝𝑝3 = 𝑎𝑎�𝑦𝑦 + 6𝑎𝑎�𝑧𝑧 

Let  �̅�𝐴 = �̅�𝑟𝑝𝑝1𝑝𝑝2 =  �̅�𝑟𝑝𝑝2 −  �̅�𝑟𝑝𝑝1 = −6𝑎𝑎�𝑥𝑥 + 4𝑎𝑎�𝑦𝑦 + 7𝑎𝑎� 

𝐵𝐵� = �̅�𝑟𝑝𝑝2𝑝𝑝3 =  �̅�𝑟𝑝𝑝3 −  �̅�𝑟𝑝𝑝2 = 2𝑎𝑎�𝑥𝑥 − 4𝑎𝑎�𝑦𝑦 + 2𝑎𝑎�𝑧𝑧 

𝐶𝐶̅ = �̅�𝑟𝑝𝑝3𝑝𝑝1 =  �̅�𝑟𝑝𝑝1 −  �̅�𝑟𝑝𝑝3 = 4𝑎𝑎�𝑥𝑥 − 9𝑎𝑎�𝑧𝑧 

Note that  �̅�𝐴 + 𝐵𝐵� + 𝐶𝐶̅ = 0 
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�̅�𝐴.𝐵𝐵� = |�̅�𝐴||𝐵𝐵�| cos𝛼𝛼1       ⇒   cos𝛼𝛼1 =
�̅�𝐴.𝐵𝐵�

|�̅�𝐴||𝐵𝐵�|
=
−12 − 16 − 14
√101√24

  

∴  𝛼𝛼1 = cos−1 −14
√101√24

= 106.52°   ⇒  𝜃𝜃1 = 180 − 𝛼𝛼1 = 73.48° 

𝐵𝐵� .𝐶𝐶̅ = |𝐵𝐵�||𝐶𝐶̅| cos𝛼𝛼2       ⇒   cos𝛼𝛼2 =
𝐵𝐵� .𝐶𝐶̅

|𝐵𝐵�||𝐶𝐶̅|
=

8 + 0 − 18
√24√97

  

∴  𝛼𝛼2 = cos−1 −10
√24√97

= 101.96°  ⇒  𝜃𝜃2 = 180 − 𝛼𝛼2 = 78.04° 

C� . A� = |C�||A�| cosα3       ⇒   cosα3 =
C� . A�

|C�||A�|
=
−24 + 0 − 63
√97√101

  

∴  α3 = cos−1 −87
√97√101

= 151.52°   ⇒  θ3 = 180− α3 = 28.48° 

 

 

 

 

 

 

 

 

                         

Fig. 1.7 for Example 3. 

Note that θ1 + θ2 + θ3 = 180° 

H.W 2: Show that vectors A � =  −5a�x − 3a�y − 3a�z , B � = a�x + 3a�y + 4a�z and 
 C � = 4a�x − a�z form the sides of a triangle. Is this a right-angle triangle? Calculate the area 
of the triangle.    
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Ans.: Yes; 10.5 

H.W 3: Show that points P1(5,2,-4), P2(1,1,2) and P3(-3,0,8) all lie on a straight line. 
Determine the shortest distance between the line and point P4(3,-1,0).  

Ans.: 2.426 

1.4 Scalar and Vector Fields:  

A field is a function that specifies a particular quantity everywhere in a region. If the 
quantity is scalar (or vector), the field is said to be a scalar (or vector) field. Examples of 
scalar fields are temperature distribution in a building, sound intensity in a theater, and 
electric potential in a region. The gravitational force on a body in space, the velocity of 
raindrops in the atmosphere, and the electric field intensity are examples of vector fields.  

Example 4: -  

A vector field  𝑆𝑆̅ is expressed in Cartesian coordinates as:  

𝑆𝑆̅ = 125 
(𝑥𝑥 − 1)𝑎𝑎�𝑥𝑥 + (𝑦𝑦 − 2)𝑎𝑎�𝑦𝑦 + (𝑧𝑧 + 1)𝑎𝑎�𝑧𝑧

(𝑥𝑥 − 1)2 + (𝑦𝑦 − 2)2 + (𝑧𝑧 + 1)2  

(a) Evaluate 𝑆𝑆̅ at P(2,4,3).    (b) Determine a unit vector that gives the direction of 𝑆𝑆̅ at P.    
(c) Specify the surface f(x,y,z) on which |𝑆𝑆̅| = 1.  

Solution: 

(a) at P(2,4,3)  

⇒ 𝑆𝑆̅ =  125 
𝑎𝑎�𝑥𝑥 + 2𝑎𝑎�𝑦𝑦 + 4𝑎𝑎�𝑧𝑧

12 + 22 + 42   

∴   𝑆𝑆̅ = 5.95𝑎𝑎�𝑥𝑥 + 11.9𝑎𝑎�𝑦𝑦 + 23.8𝑎𝑎�𝑧𝑧 

(b) at P(2,4,3)   

⇒ 𝑎𝑎�𝑆𝑆 =
𝑆𝑆̅

|𝑆𝑆̅|
=   

5.95𝑎𝑎�𝑥𝑥 + 11.9𝑎𝑎�𝑦𝑦 + 23.8𝑎𝑎�𝑧𝑧
27.277  

∴  𝑎𝑎�𝑆𝑆 = 0.218𝑎𝑎�𝑥𝑥 + 0.436𝑎𝑎�𝑦𝑦 + 0.873𝑎𝑎�𝑧𝑧 
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(c) ∵ 𝑆𝑆̅ = 125 
(𝑥𝑥 − 1)𝑎𝑎�𝑥𝑥 + (𝑦𝑦 − 2)𝑎𝑎�𝑦𝑦 + (𝑧𝑧 + 1)𝑎𝑎�𝑧𝑧

(𝑥𝑥 − 1)2 + (𝑦𝑦 − 2)2 + (𝑧𝑧 + 1)2  

∴  |𝑆𝑆̅| =  
125

(𝑥𝑥 − 1)2 + (𝑦𝑦 − 2)2 + (𝑧𝑧 + 1)2  �(𝑥𝑥 − 1)2 + (𝑦𝑦 − 2)2 + (𝑧𝑧 + 1)2 = 1 

∴ |𝑆𝑆̅| =  
125

�(𝑥𝑥 − 1)2 + (𝑦𝑦 − 2)2 + (𝑧𝑧 + 1)2
 = 1 

∴  �(𝑥𝑥 − 1)2 + (𝑦𝑦 − 2)2 + (𝑧𝑧 + 1)2 = 125 

 

H.W 4: Two vector field are:  𝐹𝐹� =  −10𝑎𝑎�𝑥𝑥 + 20𝑥𝑥(𝑦𝑦 − 1)𝑎𝑎�𝑦𝑦 and �̅�𝐺 = 2𝑥𝑥2𝑦𝑦𝑎𝑎�𝑥𝑥 − 4𝑎𝑎�𝑦𝑦 +
𝑧𝑧𝑎𝑎�𝑧𝑧. For the point P(2,3,-4), find: (a)  |𝐹𝐹�| ; (b) |�̅�𝐺| ; (c)  a unit vector in the direction of 
𝐹𝐹� − �̅�𝐺 ; (d)   a unit vector in the direction of 𝐹𝐹� + �̅�𝐺.  

Ans.:  80.6 ;   24.7 ;   −0.37𝑎𝑎�𝑥𝑥 + 0.92𝑎𝑎�𝑦𝑦 + 0.04𝑎𝑎�𝑧𝑧 ; 0.18𝑎𝑎�𝑥𝑥 + 0.98𝑎𝑎�𝑦𝑦 − 0.05𝑎𝑎�𝑧𝑧    

 

1.5  Systems of Coordinates 

In this section, three orthogonal systems will be discussed which include: Cartesian, 

cylindrical, and the spherical system of coordinates. 

1.5.1  Cartesian ( Rectangular) Coordinates (𝒙𝒙,𝒚𝒚, 𝒛𝒛) 

A point 𝑃𝑃(𝑥𝑥,𝑦𝑦, 𝑧𝑧) in Cartesian coordinates is located by giving its 𝑥𝑥, 𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧 coordinates. 
Fig. 1.8a shows the points P and Q whose coordinates are (1, 2, 3) and (2,-2, 1), 
respectively. Intersection of three mutually perpendicular planes defines a point in 
Cartesian coordinates, and as shown in Fig. 1.8b.  

A vector 𝐴𝐴 � in Cartesian coordinates may be represented as: 𝐴𝐴 � =  𝐴𝐴𝑥𝑥 𝑎𝑎�𝑥𝑥 + 𝐴𝐴𝑦𝑦  𝑎𝑎�𝑦𝑦 + 𝐴𝐴𝑧𝑧 𝑎𝑎�𝑧𝑧, 
and shown in Fig. 1.9 
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where 𝐴𝐴𝑥𝑥 , 𝐴𝐴𝑦𝑦  and 𝐴𝐴𝑧𝑧 are called the components of 𝐴𝐴 �  in the x, y and z directions 

respectively; 𝑎𝑎�𝑥𝑥 ,𝑎𝑎�𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎�𝑧𝑧 are unit vectors in the x, y and z directions, respectively.  

 

Fig. 1.9 (a) Unit vectors 𝑎𝑎�𝑥𝑥, 𝑎𝑎�𝑦𝑦, and 
𝑎𝑎�𝑧𝑧, (b) components of  𝐴𝐴 �  along 𝑎𝑎�𝑥𝑥, 
𝑎𝑎�𝑦𝑦, and 𝑎𝑎�𝑧𝑧 

 

Any vector can be written as:  

 𝐴𝐴 � =  |𝐴𝐴 � | 𝑎𝑎�𝐴𝐴 , where:  

|𝐴𝐴 � | =  �𝐴𝐴𝑥𝑥2 + 𝐴𝐴𝑦𝑦2+𝐴𝐴𝑧𝑧2      The magnitude of the vector  𝐴𝐴 �  

𝑎𝑎�𝐴𝐴 =  
𝐴𝐴 �

|𝐴𝐴 � |
=  
𝐴𝐴𝑥𝑥 𝑎𝑎�𝑥𝑥 + 𝐴𝐴𝑦𝑦  𝑎𝑎�𝑦𝑦 + 𝐴𝐴𝑧𝑧 𝑎𝑎�𝑧𝑧

�𝐴𝐴𝑥𝑥2 + 𝐴𝐴𝑦𝑦2+𝐴𝐴𝑧𝑧2
 

 
(a)                                                                       (b) 

Fig. 1.8 (a) The Location of point P and Q. (b) The three mutually perpendicular 

planes of the Cartesian coordinate system.  
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Unit vector along the vector �̅�𝐴.  

|𝑎𝑎�𝐴𝐴| = 1,             𝑎𝑎�𝐴𝐴 is a vector of unity magnitude.  

If 𝐴𝐴 � =  𝐴𝐴𝑥𝑥 𝑎𝑎�𝑥𝑥 + 𝐴𝐴𝑦𝑦  𝑎𝑎�𝑦𝑦 + 𝐴𝐴𝑧𝑧 𝑎𝑎�𝑧𝑧 and 𝐵𝐵 � =  𝐵𝐵𝑥𝑥 𝑎𝑎�𝑥𝑥 + 𝐵𝐵𝑦𝑦  𝑎𝑎�𝑦𝑦 + 𝐵𝐵𝑧𝑧 𝑎𝑎�𝑧𝑧, then:  

∎ 𝐴𝐴 � + 𝐵𝐵� =  (𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑥𝑥) 𝑎𝑎�𝑥𝑥 + (𝐴𝐴𝑦𝑦 + 𝐵𝐵𝑦𝑦) 𝑎𝑎�𝑦𝑦 + (𝐴𝐴𝑧𝑧 + 𝐵𝐵𝑧𝑧) 𝑎𝑎�𝑧𝑧   

∎ 𝐴𝐴 � − 𝐵𝐵� =  (𝐴𝐴𝑥𝑥 − 𝐵𝐵𝑥𝑥) 𝑎𝑎�𝑥𝑥 + (𝐴𝐴𝑦𝑦 − 𝐵𝐵𝑦𝑦) 𝑎𝑎�𝑦𝑦 + (𝐴𝐴𝑧𝑧 − 𝐵𝐵𝑧𝑧) 𝑎𝑎�𝑧𝑧   

 

Position Vector:  

The position vector �̅�𝑟𝑝𝑝 (or radius vector) of point P(x,y,z) is as the directed distance from 
the origin O to P; i. e.,  

�̅�𝑟𝑝𝑝 = 𝑂𝑂𝑃𝑃���� =  𝑥𝑥 𝑎𝑎�𝑥𝑥 + 𝑦𝑦  𝑎𝑎�𝑦𝑦 + 𝑧𝑧 𝑎𝑎�𝑧𝑧 

The position vector for point P is useful in defining its position in space. Point P(3,4,5), for 
example, and its position vector  

�̅�𝑟𝑝𝑝 = 𝑂𝑂𝑃𝑃���� =  3 𝑎𝑎�𝑥𝑥 + 4  𝑎𝑎�𝑦𝑦 + 5 𝑎𝑎�𝑧𝑧 , are shown in Fig. 1.10a. 

Distance Vector:  

The distance vector is the displacement from one point to another.  

If two points P and Q are given by (𝑥𝑥𝑃𝑃 ,𝑦𝑦𝑃𝑃  , 𝑧𝑧𝑃𝑃) and (𝑥𝑥𝑄𝑄 ,𝑦𝑦𝑄𝑄  , 𝑧𝑧𝑄𝑄), the distance vector  (or 
separation vector) is the displacement from P to Q as shown in Fig. 1.10b; that is  
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Fig. 1.10 (a) Illustration of position vector �̅�𝑟𝑝𝑝 =  3 𝑎𝑎�𝑥𝑥 + 4  𝑎𝑎�𝑦𝑦 + 5 𝑎𝑎�𝑧𝑧 (b) Distance vector 
�̅�𝑟𝑃𝑃𝑄𝑄.  

�̅�𝑟𝑃𝑃𝑄𝑄 = �̅�𝑟𝑄𝑄 −  �̅�𝑟𝑃𝑃 = (𝑥𝑥𝑄𝑄 − 𝑥𝑥𝑃𝑃) 𝑎𝑎�𝑥𝑥 + (𝑦𝑦𝑄𝑄 − 𝑦𝑦𝑃𝑃)  𝑎𝑎�𝑦𝑦 + (𝑧𝑧𝑄𝑄 − 𝑧𝑧𝑃𝑃) 𝑎𝑎�𝑧𝑧 

The distance between the points P and Q is given by:  

𝑎𝑎 =  ��̅�𝑟𝑃𝑃𝑄𝑄� = ��𝑥𝑥𝑄𝑄 − 𝑥𝑥𝑃𝑃�
2 + �𝑦𝑦𝑄𝑄 − 𝑦𝑦𝑃𝑃�

2 + (𝑧𝑧𝑄𝑄 − 𝑧𝑧𝑃𝑃)2  

Differential Length, Area and Volume in Cartesian Coordinates:  

From Fig. 1.11, we notice that:  

1. Differential length is given by:  

𝑎𝑎𝐿𝐿� =  𝑎𝑎𝑥𝑥 𝑎𝑎�𝑥𝑥 + 𝑎𝑎𝑦𝑦  𝑎𝑎�𝑦𝑦 + 𝑎𝑎𝑧𝑧 𝑎𝑎�𝑧𝑧,      Vector Quantity 

𝑎𝑎𝐿𝐿 =  �𝑎𝑎𝑥𝑥2 + 𝑎𝑎𝑦𝑦2 + 𝑎𝑎𝑧𝑧2 ,               Scalar Quantity 

2. Differential normal area is given by:  

𝑎𝑎�̅�𝑠 =  𝑎𝑎𝑦𝑦 𝑎𝑎𝑧𝑧 𝑎𝑎�𝑥𝑥 

      = 𝑎𝑎𝑥𝑥 𝑎𝑎𝑧𝑧  𝑎𝑎�𝑦𝑦,                                 Vector Quantity 

      = 𝑎𝑎𝑥𝑥 𝑎𝑎𝑦𝑦 𝑎𝑎�𝑧𝑧 

(a) (b) 
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3. Differential volume is given by: 
𝑎𝑎𝑑𝑑 = 𝑎𝑎𝑥𝑥 𝑎𝑎𝑦𝑦 𝑎𝑎𝑧𝑧,                                  Scalar Quantity 

 

 

 

 

 

 

 

 

Example 5: - Given the points M(2, -1,1) and T(-4, -2,6). Find: (a) the position vector for 

point M and T;   (b) a unit vector from M to T;   (c) the distance from M to T.  

Solution:  

(a) �̅�𝑟𝑀𝑀 =  2 𝑎𝑎�𝑥𝑥 −   𝑎𝑎�𝑦𝑦 + 𝑎𝑎�𝑧𝑧  and   �̅�𝑟𝑇𝑇 = −4  𝑎𝑎�𝑥𝑥 − 2  𝑎𝑎�𝑦𝑦 + 6 𝑎𝑎�𝑧𝑧   

(b) The vector from M to T is given by:  

�̅�𝑟𝑀𝑀𝑇𝑇 =  �̅�𝑟𝑇𝑇 −  �̅�𝑟𝑀𝑀 = (−4 − 2)𝑎𝑎�𝑥𝑥 + �−2 − (−1)�𝑎𝑎�𝑦𝑦 + (6 − 1)𝑎𝑎�𝑧𝑧 =  −6 𝑎𝑎�𝑥𝑥 − 𝑎𝑎�𝑦𝑦 + 5 𝑎𝑎�𝑧𝑧 

∴ 𝑎𝑎�𝑟𝑟𝑀𝑀𝑀𝑀 =  
�̅�𝑟𝑀𝑀𝑇𝑇

|�̅�𝑟𝑀𝑀𝑇𝑇| =  
−6 𝑎𝑎�𝑥𝑥 − 𝑎𝑎�𝑦𝑦 + 5 𝑎𝑎�𝑧𝑧

�(−6)2 + (−1)2 + (5)2
=  
−6 𝑎𝑎�𝑥𝑥 − 𝑎𝑎�𝑦𝑦 + 5 𝑎𝑎�𝑧𝑧

√62
   

∴ 𝑎𝑎�𝑟𝑟𝑀𝑀𝑀𝑀 =  −0.762 𝑎𝑎�𝑥𝑥 − 0.127 𝑎𝑎�𝑦𝑦 + 0.635 𝑎𝑎�𝑧𝑧 

(c) The distance from M to T is given by:  

 

Fig. 1.11 Differential length, area, and volume in Cartesian coordinates. 
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𝑎𝑎 =  |�̅�𝑟𝑀𝑀𝑇𝑇| =  √62 =  7.874 [m]   

Example 6: - Given vectors  𝐴𝐴 � =  𝑎𝑎�𝑥𝑥 +  3 𝑎𝑎�𝑧𝑧 and 𝐵𝐵 � =  5 𝑎𝑎�𝑥𝑥 + 2 𝑎𝑎�𝑦𝑦 − 6 𝑎𝑎�𝑧𝑧 , determine:  

(a) |𝐴𝐴 � + 𝐵𝐵 � |;      (b) 5𝐴𝐴 � − 𝐵𝐵�  ;     (c) The component of 𝐴𝐴 �  along 𝑎𝑎�𝑦𝑦 ; (d) A unit vector 

along 3𝐴𝐴 � + 𝐵𝐵�.  

Solution:  

(a) 𝐴𝐴 � + 𝐵𝐵� = (𝑎𝑎�𝑥𝑥 +  3 𝑎𝑎�𝑧𝑧) + (5 𝑎𝑎�𝑥𝑥 + 2 𝑎𝑎�𝑦𝑦 − 6 𝑎𝑎�𝑧𝑧) = 6 𝑎𝑎�𝑥𝑥 + 2 𝑎𝑎�𝑦𝑦 − 3 𝑎𝑎�𝑧𝑧    

∴  |𝐴𝐴 � + 𝐵𝐵 � | =  �62+ 22+ (−3)2 =  √36 + 4 + 9 = 7 

(b) 5𝐴𝐴 � − 𝐵𝐵� = 5(𝑎𝑎�𝑥𝑥 +  3 𝑎𝑎�𝑧𝑧)− (5 𝑎𝑎�𝑥𝑥 + 2 𝑎𝑎�𝑦𝑦 − 6 𝑎𝑎�𝑧𝑧) 

                       = (5 𝑎𝑎�𝑥𝑥 +  15 𝑎𝑎�𝑧𝑧) − (5 𝑎𝑎�𝑥𝑥 + 2 𝑎𝑎�𝑦𝑦 − 6 𝑎𝑎�𝑧𝑧)  

∴   5𝐴𝐴 � − 𝐵𝐵� = −2 𝑎𝑎�𝑦𝑦 + 21 𝑎𝑎�𝑧𝑧 

(c) The component of  𝐴𝐴 �  along 𝑎𝑎�𝑦𝑦 is 𝐴𝐴𝑦𝑦 = 0 

(d) Let 𝐶𝐶̅ = 3𝐴𝐴 � + 𝐵𝐵� = 3 (𝑎𝑎�𝑥𝑥 + 3 𝑎𝑎�𝑧𝑧) + (5 𝑎𝑎�𝑥𝑥 + 2 𝑎𝑎�𝑦𝑦 − 6 𝑎𝑎�𝑧𝑧) = 8 𝑎𝑎�𝑥𝑥 + 2 𝑎𝑎�𝑦𝑦 + 3 𝑎𝑎�𝑧𝑧  

𝑎𝑎�𝐶𝐶 =  
𝐶𝐶̅

|𝐶𝐶̅|
=  

8 𝑎𝑎�𝑥𝑥 + 2𝑎𝑎�𝑦𝑦 + 3 𝑎𝑎�𝑧𝑧
√64 + 4 + 9

= 0.9117 𝑎𝑎�𝑥𝑥 + 0.2279 𝑎𝑎�𝑦𝑦 + 0.3419 𝑎𝑎�𝑧𝑧 

H.W 5: Given points M(-1,2,1), N(3,-3,0) and P(-2,-3,-4), find: 

(a) �̅�𝑟𝑀𝑀𝑀𝑀 ; (b)   �̅�𝑟𝑀𝑀𝑀𝑀 +  �̅�𝑟𝑀𝑀𝑃𝑃 ;   (c) |�̅�𝑟𝑀𝑀| ; (d) 𝑎𝑎�𝑟𝑟𝑀𝑀𝑀𝑀 ; (e) |2 �̅�𝑟𝑃𝑃 − 3 �̅�𝑟𝑀𝑀|.  

Ans.: 4 𝑎𝑎�𝑥𝑥 − 5 𝑎𝑎�𝑦𝑦 − 𝑎𝑎�𝑧𝑧 ; 3 𝑎𝑎�𝑥𝑥 − 10 𝑎𝑎�𝑦𝑦 − 6 𝑎𝑎�𝑧𝑧 ; 2.45 ; −0.14 𝑎𝑎�𝑥𝑥 − 0.7 𝑎𝑎�𝑦𝑦 − 0.7 𝑎𝑎�𝑧𝑧 ; 
15.56 

H.W 6: Express the unit vector directed toward the point P(1,-2,3) from an arbitrary 
point on the line described by 𝑥𝑥 = −3 ,𝑦𝑦 = 1.  

𝐀𝐀𝐀𝐀𝐀𝐀. :
4𝑎𝑎�𝑥𝑥 − 3𝑎𝑎�𝑦𝑦 + (3 − 𝑧𝑧)𝑎𝑎�𝑧𝑧

�25 + (3 − 𝑧𝑧)2
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1.5.2 Circular Cylindrical Coordinates:  

The circular cylindrical coordinates system is very convenient whenever we are dealing 
with problems having cylindrical symmetry. A point P in cylindrical coordinates is 
represented as (𝑟𝑟,𝜙𝜙, 𝑧𝑧) and is as shown in Fig. 1.12. 𝑟𝑟 is the radius of the cylinder passing 
through P or the radial distance from the z-axis; 𝜙𝜙 is the angle measured from the x-axis 
in the xy-plane; and 𝑧𝑧 is the same as in the Cartesian system. The ranges of the variables 
are: 

0 ≤ 𝑟𝑟 ≤  ∞, 0 ≤ 𝜙𝜙 ≤  2𝜋𝜋 ,−∞ ≤ 𝑧𝑧 ≤ ∞ 

Intersection of three surfaces defined by 𝑟𝑟 = constant, 𝜙𝜙 = constant and  𝑧𝑧 = constant is 
also a point in cylindrical coordinates, and is as shown in Fig. 1.12. 

 

Fig. 1.12 Cylindrical coordinate system. 

A vector �̅�𝐴 in cylindrical coordinates can be written as �̅�𝐴 = 𝐴𝐴𝑟𝑟𝑎𝑎�𝑟𝑟 + 𝐴𝐴𝜙𝜙𝑎𝑎�𝜙𝜙 + 𝐴𝐴𝑧𝑧𝑎𝑎�𝑧𝑧 

where 𝑎𝑎�𝑟𝑟 , 𝑎𝑎�𝜙𝜙 and 𝑎𝑎�𝑧𝑧 are unit vectors in the 𝑟𝑟− ,𝜙𝜙 − and 𝑧𝑧 −directions. 

The magnitude of  �̅�𝐴 is:  

|�̅�𝐴| = �𝐴𝐴𝑟𝑟2 + 𝐴𝐴𝜙𝜙2 + 𝐴𝐴𝑧𝑧2  
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Notice that the unit vectors 𝑎𝑎�𝑟𝑟 , 𝑎𝑎�𝜙𝜙 and 𝑎𝑎�𝑧𝑧 are mutually perpendicular because  our 
coordinates system is orthogonal;  𝑎𝑎�𝑟𝑟 points in the direction of increasing 𝑟𝑟, 𝑎𝑎�𝜙𝜙  points in 
the direction of increasing 𝜙𝜙,  and 𝑎𝑎�𝑧𝑧 in the positive z-direction. Thus,  

𝑎𝑎�𝑟𝑟 .𝑎𝑎�𝑟𝑟 =  𝑎𝑎�𝜙𝜙 .𝑎𝑎�𝜙𝜙 = 𝑎𝑎�𝑧𝑧.𝑎𝑎�𝑧𝑧 = 1 

𝑎𝑎�𝑟𝑟 .𝑎𝑎�𝜙𝜙 = 𝑎𝑎�𝜙𝜙 .𝑎𝑎�𝑧𝑧 = 𝑎𝑎�𝑧𝑧.𝑎𝑎�𝑟𝑟 = 0 

𝑎𝑎�𝑟𝑟 × 𝑎𝑎�𝑟𝑟 =  𝑎𝑎�𝜙𝜙 × 𝑎𝑎�𝜙𝜙 = 𝑎𝑎�𝑧𝑧 × 𝑎𝑎�𝑧𝑧 = 0 

𝑎𝑎�𝑟𝑟 × 𝑎𝑎�𝜙𝜙 = 𝑎𝑎�𝑧𝑧 ;   𝑎𝑎�𝜙𝜙 × 𝑎𝑎�𝑧𝑧 = 𝑎𝑎�𝑟𝑟  ;  𝑎𝑎�𝑧𝑧 × 𝑎𝑎�𝑟𝑟 = 𝑎𝑎�𝜙𝜙 , see Fig. 1.6 with replacing (𝑎𝑎�𝑥𝑥 ,𝑎𝑎�𝑦𝑦 ,𝑎𝑎�𝑧𝑧) 
with (𝑎𝑎�𝑟𝑟  ,𝑎𝑎�𝜙𝜙 ,𝑎𝑎�𝑧𝑧) 

If  �̅�𝐴 = 𝐴𝐴𝑟𝑟𝑎𝑎�𝑟𝑟 + 𝐴𝐴𝜙𝜙𝑎𝑎�𝜙𝜙 + 𝐴𝐴𝑧𝑧𝑎𝑎�𝑧𝑧 and 𝐵𝐵� = 𝐵𝐵𝑟𝑟𝑎𝑎�𝑟𝑟 + 𝐵𝐵𝜙𝜙𝑎𝑎�𝜙𝜙 + 𝐵𝐵𝑧𝑧𝑎𝑎�𝑧𝑧 , then:  

�̅�𝐴.𝐵𝐵� = 𝐴𝐴𝑟𝑟  𝐵𝐵𝑟𝑟 + 𝐴𝐴𝜙𝜙 𝐵𝐵𝜙𝜙 + 𝐴𝐴𝑧𝑧 𝐵𝐵𝑧𝑧 

And  

�̅�𝐴  ×  𝐵𝐵� =  �
𝑎𝑎�𝑟𝑟 𝑎𝑎�𝜙𝜙 𝑎𝑎�𝑧𝑧
𝐴𝐴𝑟𝑟 𝐴𝐴𝜙𝜙 𝐴𝐴𝑧𝑧
𝐵𝐵𝑟𝑟 𝐵𝐵𝜙𝜙 𝐵𝐵𝑧𝑧

� 

Differential Length, Area, and Volume in Cylindrical Coordinates:  

From Fig. 1.13, we notice that:  

(1) Differential length is given by:  

𝑎𝑎𝐿𝐿� =  𝑎𝑎𝑟𝑟 𝑎𝑎�𝑟𝑟 + 𝑟𝑟𝑎𝑎𝜙𝜙  𝑎𝑎�𝜙𝜙 + 𝑎𝑎𝑧𝑧 𝑎𝑎�𝑧𝑧,         Vector Quantity 

𝑎𝑎𝐿𝐿 =  �𝑎𝑎𝑟𝑟2 + (𝑟𝑟𝑎𝑎𝜙𝜙)2 + 𝑎𝑎𝑧𝑧2 ,                Scalar Quantity  

(2) Differential normal area is given by:  

𝑎𝑎�̅�𝑠  = 𝑟𝑟 𝑎𝑎𝜙𝜙 𝑎𝑎𝑧𝑧 𝑎𝑎�𝑟𝑟 

       = 𝑎𝑎𝑟𝑟 𝑎𝑎𝑧𝑧  𝑎𝑎�𝜙𝜙,                                

         = 𝑟𝑟𝑎𝑎𝑟𝑟 𝑎𝑎𝜙𝜙 𝑎𝑎�𝑧𝑧                                     Vector Quantity 
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(3) Differential volume is given by:  

𝑎𝑎𝑑𝑑 = 𝑟𝑟𝑎𝑎𝑟𝑟 𝑎𝑎𝜙𝜙 𝑎𝑎𝑧𝑧 ,                                  Scalar Quantity         

 

The relationship between the variables (𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧) of the Cartesian coordinates and those of 
the cylindrical system (𝑟𝑟 ,𝜙𝜙 , 𝑧𝑧) are illustrated in Fig. 1.14, and given by:  

1- From Cartesian To Cylindrical:  

𝑥𝑥 = 𝑟𝑟 cos𝜙𝜙 

𝑦𝑦 = 𝑟𝑟 sin𝜙𝜙 

𝑧𝑧 = 𝑧𝑧 

2- From Cylindrical To Cartesian:  

𝑟𝑟 = �𝑥𝑥2 + 𝑦𝑦2 

𝜙𝜙 = tan−1 𝑦𝑦
𝑥𝑥
  

𝑧𝑧 = 𝑧𝑧 

The dot product between (𝑎𝑎�𝑥𝑥 ,𝑎𝑎�𝑦𝑦 ,𝑎𝑎�𝑧𝑧) and (𝑎𝑎�𝑟𝑟  ,𝑎𝑎�𝜙𝜙 ,𝑎𝑎�𝑧𝑧) are obtained geometrically from 
Fig. 1.15:  

 

 

Fig. 1.13 Differential quantities in the cylindrical system. 

Fig. 1.14 The relationship between (𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧)  
and (𝑟𝑟 ,𝜙𝜙 , 𝑧𝑧). 

𝑟𝑟 

𝑟𝑟 

𝑟𝑟 
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𝑎𝑎�𝑥𝑥. 𝑎𝑎�𝑟𝑟 =  cos𝜙𝜙 𝑎𝑎�𝑦𝑦 .𝑎𝑎�𝑟𝑟 =  cos(90° − 𝜙𝜙) = sin𝜙𝜙 
𝑎𝑎�𝑥𝑥. 𝑎𝑎�𝜙𝜙 =  −  cos(90° − 𝜙𝜙) = − sin𝜙𝜙 𝑎𝑎�𝑦𝑦 .𝑎𝑎�𝜙𝜙 =  cos𝜙𝜙 
𝑎𝑎�𝑥𝑥. 𝑎𝑎�𝑧𝑧 = 0 𝑎𝑎�𝑦𝑦 .𝑎𝑎�𝑧𝑧 = 0 

Thus:  

𝑎𝑎�𝑥𝑥 =  cos𝜙𝜙 𝑎𝑎�𝑟𝑟 −  sin𝜙𝜙 𝑎𝑎�𝜙𝜙 𝑎𝑎�𝑟𝑟 =  cos𝜙𝜙 𝑎𝑎�𝑥𝑥 + sin𝜙𝜙 𝑎𝑎�𝑦𝑦 
𝑎𝑎�𝑦𝑦 =  sin𝜙𝜙 𝑎𝑎�𝑟𝑟 + cos𝜙𝜙 𝑎𝑎�𝜙𝜙  𝑎𝑎�𝜙𝜙 =  − sin𝜙𝜙𝑎𝑎�𝑥𝑥 + cos𝜙𝜙 𝑎𝑎�𝑦𝑦  
𝑎𝑎�𝑧𝑧 = 𝑎𝑎�𝑧𝑧  𝑎𝑎�𝑧𝑧 = 𝑎𝑎�𝑧𝑧 
𝛼𝛼 = 90° − 𝜙𝜙    

 

 

Fig. 1.15 Relationship between unit vectors of 
Cartesian and cylindrical coordinates.  

 

 

The vector 𝐴𝐴 � =  𝐴𝐴𝑥𝑥 𝑎𝑎�𝑥𝑥 + 𝐴𝐴𝑦𝑦  𝑎𝑎�𝑦𝑦 + 𝐴𝐴𝑧𝑧 𝑎𝑎�𝑧𝑧  can be transformed into cylindrical coordinates 
as:  

𝐴𝐴𝑟𝑟 = �̅�𝐴. 𝑎𝑎�𝑟𝑟 = �𝐴𝐴𝑥𝑥 𝑎𝑎�𝑥𝑥 + 𝐴𝐴𝑦𝑦  𝑎𝑎�𝑦𝑦 + 𝐴𝐴𝑧𝑧 𝑎𝑎�𝑧𝑧�.𝑎𝑎�𝑟𝑟 = 𝐴𝐴𝑥𝑥  cos𝜙𝜙 + 𝐴𝐴𝑦𝑦 sin𝜙𝜙 

𝐴𝐴𝜙𝜙 = �̅�𝐴. 𝑎𝑎�𝜙𝜙 = �𝐴𝐴𝑥𝑥 𝑎𝑎�𝑥𝑥 + 𝐴𝐴𝑦𝑦  𝑎𝑎�𝑦𝑦 + 𝐴𝐴𝑧𝑧 𝑎𝑎�𝑧𝑧�.𝑎𝑎�𝜙𝜙 = −𝐴𝐴𝑥𝑥  sin𝜙𝜙 + 𝐴𝐴𝑦𝑦 cos𝜙𝜙 

𝐴𝐴𝑧𝑧 = �̅�𝐴.𝑎𝑎�𝑧𝑧 = �𝐴𝐴𝑥𝑥 𝑎𝑎�𝑥𝑥 + 𝐴𝐴𝑦𝑦  𝑎𝑎�𝑦𝑦 + 𝐴𝐴𝑧𝑧 𝑎𝑎�𝑧𝑧�.𝑎𝑎�𝑧𝑧 = 𝐴𝐴𝑧𝑧 

The vector �̅�𝐴 = 𝐴𝐴𝑟𝑟𝑎𝑎�𝑟𝑟 + 𝐴𝐴𝜙𝜙𝑎𝑎�𝜙𝜙 + 𝐴𝐴𝑧𝑧𝑎𝑎�𝑧𝑧 can be transformed into Cartesian coordinates as: 

𝐴𝐴𝑥𝑥 = �̅�𝐴. 𝑎𝑎�𝑥𝑥 = �𝐴𝐴𝑟𝑟𝑎𝑎�𝑟𝑟 + 𝐴𝐴𝜙𝜙𝑎𝑎�𝜙𝜙 + 𝐴𝐴𝑧𝑧𝑎𝑎�𝑧𝑧�.𝑎𝑎�𝑥𝑥 = 𝐴𝐴𝑟𝑟 cos𝜙𝜙 − 𝐴𝐴𝜙𝜙 sin𝜙𝜙 

𝐴𝐴𝑦𝑦 = �̅�𝐴.𝑎𝑎�𝑦𝑦 = �𝐴𝐴𝑟𝑟𝑎𝑎�𝑟𝑟 + 𝐴𝐴𝜙𝜙𝑎𝑎�𝜙𝜙 + 𝐴𝐴𝑧𝑧𝑎𝑎�𝑧𝑧�.𝑎𝑎�𝑦𝑦 = 𝐴𝐴𝑟𝑟 sin𝜙𝜙 + 𝐴𝐴𝜙𝜙 cos𝜙𝜙 

𝐴𝐴𝑧𝑧 = �̅�𝐴.𝑎𝑎�𝑧𝑧 = �𝐴𝐴𝑟𝑟𝑎𝑎�𝑟𝑟 + 𝐴𝐴𝜙𝜙𝑎𝑎�𝜙𝜙 + 𝐴𝐴𝑧𝑧𝑎𝑎�𝑧𝑧�.𝑎𝑎�𝑧𝑧 = 𝐴𝐴𝑧𝑧 

 

𝑎𝑎�r 
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Example 7: -  

(a)  Transform the vector 𝐵𝐵 � =  𝑦𝑦𝑎𝑎�𝑥𝑥 − 𝑥𝑥𝑎𝑎�𝑦𝑦 + 𝑧𝑧𝑎𝑎�𝑧𝑧 into cylindrical coordinates.  
(b)  Express the vector filed 𝑆𝑆̅ = cos𝜙𝜙 𝑎𝑎�𝑟𝑟 + sin𝜙𝜙 𝑎𝑎�𝜙𝜙 in Cartesian coordinates.  
(c)  Find at P(1, 2, -2) the vector projection of 𝐵𝐵�  in the direction of 𝑆𝑆̅.  

Solution: 

(a) 𝐵𝐵𝑟𝑟 = 𝐵𝐵� .𝑎𝑎�𝑟𝑟 = (𝑦𝑦𝑎𝑎�𝑥𝑥 − 𝑥𝑥𝑎𝑎�𝑦𝑦 + 𝑧𝑧𝑎𝑎�𝑧𝑧).𝑎𝑎�𝑟𝑟 = 𝑦𝑦 cos𝜙𝜙 − 𝑥𝑥 sin𝜙𝜙 

∵  𝑥𝑥 = 𝑟𝑟 cos𝜙𝜙  𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦 =  𝑟𝑟 sin𝜙𝜙 

𝐵𝐵𝑟𝑟 = 𝑟𝑟 sin𝜙𝜙  cos𝜙𝜙 − 𝑟𝑟 cos𝜙𝜙  sin𝜙𝜙 = 0 

𝐵𝐵𝜙𝜙 = 𝐵𝐵� .𝑎𝑎�𝜙𝜙 = (𝑦𝑦𝑎𝑎�𝑥𝑥 − 𝑥𝑥𝑎𝑎�𝑦𝑦 + 𝑧𝑧𝑎𝑎�𝑧𝑧).𝑎𝑎�𝜙𝜙 = −𝑦𝑦 sin𝜙𝜙 − 𝑥𝑥 cos𝜙𝜙 

∴ 𝐵𝐵𝜙𝜙 = −𝑟𝑟 sin2 𝜙𝜙 − 𝑟𝑟 cos2 𝜙𝜙 = −𝑟𝑟  

𝐵𝐵𝑧𝑧 = 𝐵𝐵� .𝑎𝑎�𝑧𝑧 = (𝑦𝑦𝑎𝑎�𝑥𝑥 − 𝑥𝑥𝑎𝑎�𝑦𝑦 + 𝑧𝑧𝑎𝑎�𝑧𝑧).𝑎𝑎�𝑧𝑧 = 𝑧𝑧 

∴  𝐵𝐵� = −𝑟𝑟 𝑎𝑎�𝜙𝜙 + 𝑧𝑧 𝑎𝑎�𝑧𝑧  in cylindrical coordinates 

(b) 𝑆𝑆𝑥𝑥 = 𝑆𝑆̅. 𝑎𝑎�𝑥𝑥 = �cos𝜙𝜙 𝑎𝑎�𝑟𝑟 + sin𝜙𝜙 𝑎𝑎�𝜙𝜙�.𝑎𝑎�𝑥𝑥 = cos2 𝜙𝜙 − sin2 𝜙𝜙 

∵  cos𝜙𝜙 =
𝑥𝑥
𝑟𝑟 =

𝑥𝑥
�𝑥𝑥2 + 𝑦𝑦2

 ,     sin𝜙𝜙 =
𝑦𝑦
𝑟𝑟 =

𝑦𝑦
�𝑥𝑥2 + 𝑦𝑦2

 

∴  𝑆𝑆𝑥𝑥 =  
𝑥𝑥2

𝑥𝑥2 + 𝑦𝑦2 −
𝑦𝑦2

𝑥𝑥2 + 𝑦𝑦2 =
𝑥𝑥2 − 𝑦𝑦2

𝑥𝑥2 + 𝑦𝑦2 

𝑆𝑆𝑦𝑦 = 𝑆𝑆̅. 𝑎𝑎�𝑦𝑦 = �cos𝜙𝜙𝑎𝑎�𝑟𝑟 + sin𝜙𝜙 𝑎𝑎�𝜙𝜙�.𝑎𝑎�𝑦𝑦 = cos𝜙𝜙 sin𝜙𝜙 + sin𝜙𝜙 cos𝜙𝜙 = 2 cos𝜙𝜙 sin𝜙𝜙 

∴  𝑆𝑆𝑦𝑦 = 2
𝑥𝑥

�𝑥𝑥2 + 𝑦𝑦2
𝑦𝑦

�𝑥𝑥2 + 𝑦𝑦2
=

2𝑥𝑥𝑦𝑦
𝑥𝑥2 + 𝑦𝑦2 

𝑆𝑆𝑧𝑧 = 𝑆𝑆̅. 𝑎𝑎�𝑧𝑧 = �cos𝜙𝜙 𝑎𝑎�𝑟𝑟 + sin𝜙𝜙 𝑎𝑎�𝜙𝜙�.𝑎𝑎�𝑧𝑧 = 0 

𝑆𝑆̅ =
𝑥𝑥2 − 𝑦𝑦2

𝑥𝑥2 + 𝑦𝑦2 𝑎𝑎�𝑥𝑥 +
2𝑥𝑥𝑦𝑦

𝑥𝑥2 + 𝑦𝑦2 𝑎𝑎�𝑦𝑦       in Cartesian Coordinates 
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(c)   ∵ 𝐵𝐵 � =  𝑦𝑦𝑎𝑎�𝑥𝑥 − 𝑥𝑥𝑎𝑎�𝑦𝑦 + 𝑧𝑧𝑎𝑎�𝑧𝑧 

∴ 𝐵𝐵 � =  2𝑎𝑎�𝑥𝑥 − 𝑎𝑎�𝑦𝑦 − 2𝑎𝑎�𝑧𝑧 

∵ 𝑆𝑆̅ =
𝑥𝑥2 − 𝑦𝑦2

𝑥𝑥2 + 𝑦𝑦2 𝑎𝑎�𝑥𝑥 +
2𝑥𝑥𝑦𝑦

𝑥𝑥2 + 𝑦𝑦2 𝑎𝑎�𝑦𝑦 

∴ 𝑆𝑆̅ =
1 − 4
1 + 4𝑎𝑎�𝑥𝑥 +

2(1)(2)
1 + 4 𝑎𝑎�𝑦𝑦 = −0.6𝑎𝑎�𝑥𝑥 + 0.8𝑎𝑎�𝑦𝑦 

∴ 𝐵𝐵�𝑠𝑠 = (𝐵𝐵� .𝑎𝑎�𝑠𝑠)𝑎𝑎�𝑠𝑠 =
𝐵𝐵� . 𝑆𝑆̅
|𝑆𝑆̅|2

𝑆𝑆̅ 

∴ 𝐵𝐵�𝑠𝑠 =
(2𝑎𝑎�𝑥𝑥 − 𝑎𝑎�𝑦𝑦 − 2𝑎𝑎�𝑧𝑧). �−0.6𝑎𝑎�𝑥𝑥 + 0.8𝑎𝑎�𝑦𝑦�

(0.62 + 0.82) �−0.6𝑎𝑎�𝑥𝑥 + 0.8𝑎𝑎�𝑦𝑦� 

∴ 𝐵𝐵�𝑠𝑠 =
−1.2 − 0.8

1 �−0.6𝑎𝑎�𝑥𝑥 + 0.8𝑎𝑎�𝑦𝑦� = 1.2𝑎𝑎�𝑥𝑥 + 1.6𝑎𝑎�𝑦𝑦 

H.W 7: Transform  

�̅�𝐴 =
−𝑥𝑥𝑦𝑦𝑎𝑎�𝑥𝑥 + 𝑥𝑥2𝑎𝑎�𝑦𝑦 + 𝑦𝑦2𝑎𝑎�𝑧𝑧

𝑥𝑥2 + 𝑦𝑦2          from Cartesian to cylindrical coordinates. 

Ans.: �̅�𝐴 = cos𝜙𝜙𝑎𝑎�𝜙𝜙 + sin2 𝜙𝜙 𝑎𝑎�𝑧𝑧 

H.W 8: Express the field 𝐸𝐸� = sin𝜙𝜙𝑎𝑎�𝑟𝑟 + cos2 𝜙𝜙 𝑎𝑎�𝑧𝑧  In Cartesian coordinates.  

𝐀𝐀𝐀𝐀𝐀𝐀. : 𝐸𝐸� =
𝑥𝑥𝑦𝑦𝑎𝑎�𝑥𝑥 + 𝑦𝑦2𝑎𝑎�𝑦𝑦 + 𝑥𝑥2𝑎𝑎�𝑧𝑧

𝑥𝑥2 + 𝑦𝑦2  

H.W 9: Decompose the vector  �̅�𝐴 = 2𝑎𝑎�𝑥𝑥 − 𝑎𝑎�𝑦𝑦 + 5𝑎𝑎�𝑧𝑧 into vectors parallel and 

perpendicular to the cylinder 𝑟𝑟 = 1 at point P(1,30o, 0).  

Ans.:  �̅�𝐴𝑇𝑇 = −1.866𝑎𝑎�𝜙𝜙 + 5𝑎𝑎�𝑧𝑧 and  �̅�𝐴𝑀𝑀 = 1.232𝑎𝑎�𝑟𝑟 
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1.5.3 Spherical Coordinates System:  

The spherical coordinates system is most appropriate when dealing with problems having 
of spherical symmetry. A point P can be represented as 𝑃𝑃(𝑟𝑟,𝜃𝜃,𝜙𝜙) and illustrated in  
Fig. 1.16a, 𝑅𝑅 is defined as the distance from the origin to point P or the radius of sphere 
centered at the origin and passing through P; 𝜃𝜃 is the angle between the z-axis and the 
position vector of P; 𝜙𝜙 is measured from the x-axis (𝜙𝜙 is the same as in the cylindrical 
coordinates). According to these definitions, the ranges of the variables are:  

0 ≤ 𝑅𝑅 ≤  ∞, 0 ≤ 𝜃𝜃 ≤  𝜋𝜋 , 0 ≤ 𝜙𝜙 ≤ 2𝜋𝜋 

Intersection of three orthogonal surfaces defined by 𝑅𝑅 = 𝑐𝑐𝑐𝑐𝑎𝑎𝑠𝑠𝑐𝑐𝑎𝑎𝑎𝑎𝑐𝑐, 𝜃𝜃 = 𝑐𝑐𝑐𝑐𝑎𝑎𝑠𝑠𝑐𝑐𝑎𝑎𝑎𝑎𝑐𝑐 and 
𝜙𝜙 = 𝑐𝑐𝑐𝑐𝑎𝑎𝑠𝑠𝑐𝑐𝑎𝑎𝑎𝑎𝑐𝑐 is also a point in spherical coordinates, and is shown in Fig. 1.16b.  

 

A vector �̅�𝐴  in spherical coordinates can be written as:  

�̅�𝐴 = 𝐴𝐴𝑅𝑅𝑎𝑎�𝑅𝑅 + 𝐴𝐴𝜃𝜃𝑎𝑎�𝜃𝜃 + 𝐴𝐴𝜙𝜙𝑎𝑎�𝜙𝜙 

 

 

Fig. 1.16 (a) The three spherical 
coordinates. 

Fig. 1.16 (b) Point P as intersection of three 
surfaces. 

R 
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where 𝑎𝑎�𝑅𝑅, 𝑎𝑎�𝜃𝜃 , 𝑎𝑎�𝜙𝜙 are unit vectors along the 𝑅𝑅−,𝜃𝜃−, 𝑎𝑎𝑎𝑎𝑎𝑎 𝜙𝜙 − directions as illustrated in 
Fig. 1.17 the magnitude of �̅�𝐴 is:  

|�̅�𝐴| = �𝐴𝐴𝑅𝑅2 + 𝐴𝐴𝜃𝜃2 + 𝐴𝐴𝜙𝜙2 

 

The unit vectors 𝑎𝑎�𝑅𝑅 , 𝑎𝑎�𝜃𝜃 and 𝑎𝑎�𝜙𝜙 are mutually 
orthogonal; 𝑎𝑎�𝑟𝑟 being directed along the radius 
or points in the direction of increasing 𝑟𝑟, 𝑎𝑎�𝜃𝜃  
points in the direction of increasing 𝜃𝜃, and 𝑎𝑎�𝜙𝜙 
in the direction of increasing 𝜙𝜙. Thus,  

𝑎𝑎�𝑅𝑅 .𝑎𝑎�𝑅𝑅 =  𝑎𝑎�𝜃𝜃 . 𝑎𝑎�𝜃𝜃 = 𝑎𝑎�𝜙𝜙.𝑎𝑎�𝜙𝜙 = 1 

𝑎𝑎�𝑅𝑅 .𝑎𝑎�𝜃𝜃 = 𝑎𝑎�𝜃𝜃 .𝑎𝑎�𝜙𝜙 = 𝑎𝑎�𝜙𝜙 .𝑎𝑎�𝑅𝑅 = 0 

𝑎𝑎�𝑅𝑅 × 𝑎𝑎�𝑅𝑅 = 𝑎𝑎�𝜃𝜃 × 𝑎𝑎�𝜃𝜃 =  𝑎𝑎�𝜙𝜙 × 𝑎𝑎�𝜙𝜙 = 0  

𝑎𝑎�𝑅𝑅 × 𝑎𝑎�𝜃𝜃 = 𝑎𝑎�𝜙𝜙 ;   𝑎𝑎�𝜃𝜃 × 𝑎𝑎�𝜙𝜙 = 𝑎𝑎�𝑅𝑅  ;  𝑎𝑎�𝜙𝜙 × 𝑎𝑎�𝑅𝑅 = 𝑎𝑎�𝜃𝜃 , see Fig. 1.12 with replacing  

(𝑎𝑎�𝑥𝑥 ,𝑎𝑎�𝑦𝑦 ,𝑎𝑎�𝑧𝑧) with (𝑎𝑎�𝑅𝑅  ,𝑎𝑎�𝜃𝜃 ,𝑎𝑎�𝜙𝜙).  

If  �̅�𝐴 = 𝐴𝐴𝑅𝑅𝑎𝑎�𝑟𝑟 + 𝐴𝐴𝜃𝜃𝑎𝑎�𝜃𝜃 + 𝐴𝐴𝜙𝜙𝑎𝑎�𝜙𝜙 and 𝐵𝐵� = 𝐵𝐵𝑅𝑅𝑎𝑎�𝑅𝑅 + 𝐵𝐵𝜃𝜃𝑎𝑎�𝜃𝜃 + 𝐵𝐵𝜙𝜙𝑎𝑎�𝜙𝜙 , then:  

�̅�𝐴.𝐵𝐵� = 𝐴𝐴𝑅𝑅  𝐵𝐵𝑅𝑅 + 𝐴𝐴𝜃𝜃 𝐵𝐵𝜃𝜃 + 𝐴𝐴𝜙𝜙 𝐵𝐵𝜙𝜙 

and  

�̅�𝐴  ×  𝐵𝐵� =  �
𝑎𝑎�𝑅𝑅 𝑎𝑎�𝜃𝜃 𝑎𝑎�𝜙𝜙
𝐴𝐴𝑟𝑟 𝐴𝐴𝜃𝜃 𝐴𝐴𝜙𝜙
𝐵𝐵𝑟𝑟 𝐵𝐵𝜃𝜃 𝐵𝐵𝜙𝜙

� 

 

 

 

Fig. 1.17 The three unit vectors 
for spherical coordinates. 
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Differential Length, Area, and Volume in Cylindrical Coordinates:  

From Fig. 1.18, we notice that:  

(1) Differential length is given by:  

𝑎𝑎𝐿𝐿� =  𝑎𝑎𝑅𝑅 𝑎𝑎�𝑅𝑅 + 𝑅𝑅𝑎𝑎𝜃𝜃𝑎𝑎�𝜃𝜃 + 𝑅𝑅 sin𝜃𝜃 𝑎𝑎𝜙𝜙 𝑎𝑎�𝜙𝜙,              Vector Quantity 

𝑎𝑎𝐿𝐿 =  �𝑎𝑎𝑅𝑅2 + (𝑅𝑅𝑎𝑎𝜃𝜃)2 + (𝑅𝑅 sin𝜃𝜃 𝑎𝑎𝜙𝜙)2 ,               Scalar Quantity 

(2) Differential normal area is given by (Fig.1.19):   

𝑎𝑎�̅�𝑠 = 𝑅𝑅2 sin𝜃𝜃 𝑎𝑎𝜃𝜃 𝑎𝑎𝜙𝜙 𝑎𝑎�𝑟𝑟 

  = 𝑅𝑅 sin𝜃𝜃 𝑎𝑎𝑅𝑅 𝑎𝑎𝜙𝜙  𝑎𝑎�𝜃𝜃,                                    Vector Quantity 

      = 𝑅𝑅𝑎𝑎𝑅𝑅 𝑎𝑎𝜃𝜃 𝑎𝑎�𝜙𝜙 

(3) Differential volume is given by:  

𝑎𝑎𝑑𝑑 = 𝑅𝑅2 sin𝜃𝜃 𝑎𝑎𝑟𝑟 𝑎𝑎𝜃𝜃 𝑎𝑎𝜙𝜙  ,                                  Scalar Quantity         

 

Fig. 1.18 Differential elements in spherical coordinates. 
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Fig. 1.19 Differential normal areas in spherical coordinates. 

The space variables (𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧) of the Cartesian coordinates can be related to variables 
(𝑅𝑅 ,𝜃𝜃 ,𝜙𝜙) of a spherical coordinates system. From Fig. 1.20, it is easy to notice that:  

1- From Cartesian To Spherical:   

𝑥𝑥 = 𝑅𝑅 sin𝜃𝜃 cos𝜙𝜙 

𝑦𝑦 = 𝑅𝑅 sin𝜃𝜃 sin𝜙𝜙 

𝑧𝑧 = 𝑅𝑅 cos𝜃𝜃 

2- From Spherical To Cartesian:  

𝑅𝑅 = �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 

𝜃𝜃 = tan−1
�𝑥𝑥2 + 𝑦𝑦2

𝑧𝑧  

𝜙𝜙 = tan−1
𝑦𝑦
𝑥𝑥 

 

 

The dot product between (𝑎𝑎�𝑥𝑥 ,𝑎𝑎�𝑦𝑦 ,𝑎𝑎�𝑧𝑧) and (𝑎𝑎�𝑅𝑅 ,𝑎𝑎�𝜃𝜃 ,𝑎𝑎�𝜙𝜙) are obtained geometrically from 
Fig. 1.21:  

𝑎𝑎�𝑥𝑥. 𝑎𝑎�𝑅𝑅 = 𝑎𝑎�𝑥𝑥. (cos(90 − 𝜃𝜃)𝑎𝑎�𝑟𝑟 + cos𝜃𝜃 𝑎𝑎�𝑧𝑧) = 𝑎𝑎�𝑥𝑥 . (sin𝜃𝜃 𝑎𝑎�𝑟𝑟 + cos𝜃𝜃 𝑎𝑎�𝑧𝑧) = sin𝜃𝜃 cos𝜙𝜙 

Fig. 1.20 Relationships between space variables 
(𝑥𝑥 ,𝑦𝑦 , 𝑧𝑧)  and (𝑟𝑟 , 𝜃𝜃 ,𝜙𝜙). 
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𝑎𝑎�𝑥𝑥. 𝑎𝑎�𝜃𝜃 = 𝑎𝑎�𝑥𝑥. (cos𝜃𝜃𝑎𝑎�𝑟𝑟 −  cos(90−𝜃𝜃)𝑎𝑎�𝑧𝑧) = 𝑎𝑎�𝑥𝑥. (cos𝜃𝜃 𝑎𝑎�𝑟𝑟 − sin𝜃𝜃 𝑎𝑎�𝑧𝑧) = cos𝜃𝜃 cos𝜙𝜙 

𝑎𝑎�𝑥𝑥. 𝑎𝑎�𝜙𝜙 = − sin𝜙𝜙 

𝑎𝑎�𝑦𝑦 .𝑎𝑎�𝑅𝑅 =  𝑎𝑎�𝑦𝑦 . (sin𝜃𝜃 𝑎𝑎�𝑟𝑟 + cos𝜃𝜃 𝑎𝑎�𝑧𝑧) = sin𝜃𝜃 sin𝜙𝜙 

𝑎𝑎�𝑦𝑦 .𝑎𝑎�𝜃𝜃 =  𝑎𝑎�𝑦𝑦 . (cos𝜃𝜃 𝑎𝑎�𝑟𝑟 − sin𝜃𝜃 𝑎𝑎�𝑧𝑧) = cos𝜃𝜃 sin𝜙𝜙 

𝑎𝑎�𝑦𝑦 .𝑎𝑎�𝜙𝜙 =  cos𝜙𝜙 

𝑎𝑎�𝑧𝑧.𝑎𝑎�𝑅𝑅 =  𝑎𝑎�𝑧𝑧. (sin𝜃𝜃 𝑎𝑎�𝑟𝑟 + cos𝜃𝜃 𝑎𝑎�𝑧𝑧) = cos𝜃𝜃 

𝑎𝑎�𝑧𝑧.𝑎𝑎�𝜃𝜃 =  𝑎𝑎�𝑧𝑧. (cos𝜃𝜃 𝑎𝑎�𝑟𝑟 − sin 𝜃𝜃 𝑎𝑎�𝑧𝑧) = − sin𝜃𝜃 

𝑎𝑎�𝑧𝑧.𝑎𝑎�𝜙𝜙 =  0 

 

Fig. 1.21 Relationship between the unit vectors of three coordinate systems. 
 

The vector 𝐴𝐴 � =  𝐴𝐴𝑥𝑥 𝑎𝑎�𝑥𝑥 + 𝐴𝐴𝑦𝑦  𝑎𝑎�𝑦𝑦 + 𝐴𝐴𝑧𝑧 𝑎𝑎�𝑧𝑧  can be transformed into spherical coordinates 
as:  

𝐴𝐴𝑅𝑅 = �̅�𝐴.𝑎𝑎�𝑅𝑅 = �𝐴𝐴𝑥𝑥 𝑎𝑎�𝑥𝑥 + 𝐴𝐴𝑦𝑦  𝑎𝑎�𝑦𝑦 + 𝐴𝐴𝑧𝑧 𝑎𝑎�𝑧𝑧�.𝑎𝑎�𝑅𝑅
= 𝐴𝐴𝑥𝑥 sin𝜃𝜃 cos𝜙𝜙 + 𝐴𝐴𝑦𝑦 sin𝜃𝜃 sin𝜙𝜙 + 𝐴𝐴𝑧𝑧 cos𝜃𝜃 

𝐴𝐴𝜃𝜃 = �̅�𝐴.𝑎𝑎�𝜃𝜃 = �𝐴𝐴𝑥𝑥 𝑎𝑎�𝑥𝑥 + 𝐴𝐴𝑦𝑦  𝑎𝑎�𝑦𝑦 + 𝐴𝐴𝑧𝑧 𝑎𝑎�𝑧𝑧�.𝑎𝑎�𝜃𝜃
= 𝐴𝐴𝑥𝑥 cos𝜃𝜃 cos𝜙𝜙 + 𝐴𝐴𝑦𝑦 cos𝜃𝜃 sin𝜙𝜙 − 𝐴𝐴𝑧𝑧 sin𝜃𝜃 

𝑎𝑎�𝑟𝑟  𝑎𝑎�𝑅𝑅  

𝑎𝑎�𝑟𝑟  

𝑎𝑎�𝑟𝑟  
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𝐴𝐴𝜙𝜙 = �̅�𝐴. 𝑎𝑎�𝜙𝜙 = �𝐴𝐴𝑥𝑥 𝑎𝑎�𝑥𝑥 + 𝐴𝐴𝑦𝑦  𝑎𝑎�𝑦𝑦 + 𝐴𝐴𝑧𝑧 𝑎𝑎�𝑧𝑧�.𝑎𝑎�𝜙𝜙 = −𝐴𝐴𝑥𝑥  sin𝜙𝜙 + 𝐴𝐴𝑦𝑦 cos𝜙𝜙 

The vector �̅�𝐴 = 𝐴𝐴𝑅𝑅𝑎𝑎�𝑅𝑅 + 𝐴𝐴𝜙𝜙𝑎𝑎�𝜙𝜙 + 𝐴𝐴𝑧𝑧𝑎𝑎�𝑧𝑧 can be transformed into Cartesian coordinates as: 

𝐴𝐴𝑥𝑥 = �̅�𝐴. 𝑎𝑎�𝑥𝑥 = �𝐴𝐴𝑅𝑅𝑎𝑎�𝑅𝑅 + 𝐴𝐴𝜃𝜃𝑎𝑎�𝜃𝜃 + 𝐴𝐴𝜙𝜙𝑎𝑎�𝜙𝜙�.𝑎𝑎�𝑥𝑥
= 𝐴𝐴𝑅𝑅 sin𝜃𝜃 cos𝜙𝜙 + 𝐴𝐴𝜃𝜃 cos𝜃𝜃 cos𝜙𝜙 − 𝐴𝐴𝜙𝜙 sin𝜙𝜙 

𝐴𝐴𝑦𝑦 = �̅�𝐴.𝑎𝑎�𝑦𝑦 = �𝐴𝐴𝑅𝑅𝑎𝑎�𝑅𝑅 + 𝐴𝐴𝜃𝜃𝑎𝑎�𝜃𝜃 + 𝐴𝐴𝜙𝜙𝑎𝑎�𝜙𝜙�.𝑎𝑎�𝑦𝑦
= 𝐴𝐴𝑅𝑅 sin𝜃𝜃 sin𝜙𝜙 + 𝐴𝐴𝜃𝜃 cos𝜃𝜃 sin𝜙𝜙 + 𝐴𝐴𝜙𝜙 cos𝜙𝜙 

𝐴𝐴𝑧𝑧 = �̅�𝐴.𝑎𝑎�𝑧𝑧 = �𝐴𝐴𝑅𝑅𝑎𝑎�𝑅𝑅 + 𝐴𝐴𝜃𝜃𝑎𝑎�𝜃𝜃 + 𝐴𝐴𝜙𝜙𝑎𝑎�𝜙𝜙�.𝑎𝑎�𝑧𝑧 = 𝐴𝐴𝑅𝑅 cos𝜃𝜃 − 𝐴𝐴𝜃𝜃 sin𝜃𝜃 

Example 8: -  

A vector field is given by:  

𝐷𝐷� =
�𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2

�𝑥𝑥2 + 𝑦𝑦2
�(𝑥𝑥 − 𝑦𝑦)𝑎𝑎�𝑥𝑥 + (𝑥𝑥 + 𝑦𝑦)𝑎𝑎�𝑦𝑦� 

Express this field in spherical coordinates. 

Solution: 

𝑅𝑅 = �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 ,                     𝑟𝑟 = 𝑅𝑅 sin𝜃𝜃 = �𝑥𝑥2 + 𝑦𝑦2 

𝑥𝑥 = 𝑅𝑅 sin𝜃𝜃 cos𝜙𝜙  ,   𝑦𝑦 = 𝑅𝑅 sin𝜃𝜃 sin𝜙𝜙  

∴  𝐷𝐷� =
𝑅𝑅

𝑅𝑅 sin𝜃𝜃 �
(𝑅𝑅 sin𝜃𝜃 cos𝜙𝜙 − 𝑅𝑅 sin𝜃𝜃 sin𝜙𝜙)𝑎𝑎�𝑥𝑥

+ (𝑅𝑅 sin𝜃𝜃 cos𝜙𝜙 + 𝑅𝑅 sin𝜃𝜃 sin𝜙𝜙)𝑎𝑎�𝑦𝑦� 

∴ 𝐷𝐷� = 𝑅𝑅�(cos𝜙𝜙 − sin𝜙𝜙)𝑎𝑎�𝑥𝑥 + (cos𝜙𝜙 + sin𝜙𝜙)𝑎𝑎�𝑦𝑦� 

𝐷𝐷𝑟𝑟 = 𝐷𝐷�.𝑎𝑎�𝑅𝑅 = 𝑅𝑅�(cos𝜙𝜙 − sin𝜙𝜙)𝑎𝑎�𝑥𝑥 + (cos𝜙𝜙 + sin𝜙𝜙)𝑎𝑎�𝑦𝑦�.𝑎𝑎�𝑅𝑅 

      = 𝑅𝑅[(cos𝜙𝜙 − sin𝜙𝜙) sin𝜃𝜃 cos𝜙𝜙 + (cos𝜙𝜙 + sin𝜙𝜙) sin𝜃𝜃 sin𝜙𝜙] 

      = 𝑅𝑅 sin𝜃𝜃 [cos2 𝜙𝜙 − sin𝜙𝜙 cos𝜙𝜙 + cos𝜙𝜙 sin𝜙𝜙 + sin2 𝜙𝜙] = 𝑅𝑅 sin𝜃𝜃 

∴ 𝐷𝐷𝑟𝑟 = 𝑅𝑅 sin𝜃𝜃 
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𝐷𝐷𝜃𝜃 = 𝐷𝐷�. 𝑎𝑎�𝜃𝜃 = 𝑅𝑅�(cos𝜙𝜙 − sin𝜙𝜙)𝑎𝑎�𝑥𝑥 + (cos𝜙𝜙 + sin𝜙𝜙)𝑎𝑎�𝑦𝑦�.𝑎𝑎�𝜃𝜃 

      = 𝑅𝑅[(cos𝜙𝜙 − sin𝜙𝜙) cos𝜃𝜃 cos𝜙𝜙 + (cos𝜙𝜙 + sin𝜙𝜙) cos𝜃𝜃 sin𝜙𝜙] 

      = 𝑅𝑅 cos𝜃𝜃 [cos2 𝜙𝜙 − sin𝜙𝜙 cos𝜙𝜙 + cos𝜙𝜙 sin𝜙𝜙 + sin2 𝜙𝜙] = 𝑅𝑅 cos𝜃𝜃 

∴ 𝐷𝐷𝜃𝜃 = 𝑅𝑅 cos𝜃𝜃 

𝐷𝐷𝜙𝜙 = 𝐷𝐷�. 𝑎𝑎�𝜙𝜙 = 𝑅𝑅�(cos𝜙𝜙 − sin𝜙𝜙)𝑎𝑎�𝑥𝑥 + (cos𝜙𝜙 + sin𝜙𝜙)𝑎𝑎�𝑦𝑦�.𝑎𝑎�𝜙𝜙 

      = 𝑅𝑅[−(cos𝜙𝜙 − sin𝜙𝜙) sin𝜙𝜙 + (cos𝜙𝜙 + sin𝜙𝜙) cos𝜙𝜙] 

      = 𝑅𝑅[−cos𝜙𝜙 sin𝜙𝜙 + sin2 𝜙𝜙 + cos2 𝜙𝜙 + sin𝜙𝜙 cos𝜙𝜙] = 𝑅𝑅 

∴ 𝐷𝐷𝜙𝜙 = 𝑅𝑅 

∴ 𝐷𝐷� = 𝑅𝑅 sin𝜃𝜃 𝑎𝑎�𝑅𝑅 + 𝑅𝑅 cos𝜃𝜃 𝑎𝑎�𝜃𝜃 + 𝑅𝑅𝑎𝑎�𝜙𝜙 

Example 9: -  

Given vectors �̅�𝐴 = 2𝑎𝑎�𝑥𝑥 − 𝑎𝑎�𝑦𝑦 + 5𝑎𝑎�𝑧𝑧 and 𝐵𝐵� = 4𝑎𝑎�𝜃𝜃 , find the angle between �̅�𝐴 and 𝐵𝐵�  at  
P(1, 15o, 50o).  

Solution: 

𝐵𝐵𝑥𝑥 = 𝐵𝐵� .𝑎𝑎�𝑥𝑥 = 4𝑎𝑎�𝜃𝜃 .𝑎𝑎�𝑥𝑥 = 4 cos𝜃𝜃 cos𝜙𝜙 

𝐵𝐵𝑦𝑦 = 𝐵𝐵� .𝑎𝑎�𝑦𝑦 = 4𝑎𝑎�𝜃𝜃 .𝑎𝑎�𝑦𝑦 = 4 cos𝜃𝜃 sin𝜙𝜙 

𝐵𝐵𝑧𝑧 = 𝐵𝐵� .𝑎𝑎�𝑧𝑧 = 4𝑎𝑎�𝜃𝜃 .𝑎𝑎�𝑧𝑧 = −4 sin𝜃𝜃 

∴ 𝐵𝐵� = 4 cos𝜃𝜃 cos𝜙𝜙 𝑎𝑎�𝑥𝑥 +  4 cos𝜃𝜃 sin𝜙𝜙 𝑎𝑎�𝑦𝑦 − 4 sin𝜃𝜃  𝑎𝑎�𝑧𝑧 

At P(1, 15o, 50o), 

𝐵𝐵� = 2.4835𝑎𝑎�𝑥𝑥 +  2.9597𝑎𝑎�𝑦𝑦 − 1.0352 𝑎𝑎�𝑧𝑧 

�̅�𝐴.𝐵𝐵� = �2𝑎𝑎�𝑥𝑥 − 𝑎𝑎�𝑦𝑦 + 5𝑎𝑎�𝑧𝑧� . � 2.4835𝑎𝑎�𝑥𝑥 +  2.9597𝑎𝑎�𝑦𝑦 − 1.0352 𝑎𝑎�𝑧𝑧� = −3.1687 

|�̅�𝐴| = �22 + 12+52 = 5.4772 and |𝐵𝐵�| = 4 

∵ �̅�𝐴.𝐵𝐵� = |�̅�𝐴||𝐵𝐵�| cos𝜃𝜃𝐴𝐴𝐴𝐴 
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∴  𝜃𝜃𝐴𝐴𝐴𝐴 = cos−1 �
�̅�𝐴.𝐵𝐵�

|�̅�𝐴||𝐵𝐵�|�
= cos−1 �

−3.1687
5.4772 ∗ 4�

= cos−1[−0.1446] 

∴  𝜃𝜃𝐴𝐴𝐴𝐴 = 98.31∘ 

Example 10: -  

A spherical region is defined by: 1 ≤ 𝑅𝑅 ≤  3, 15∘ ≤ 𝜃𝜃 ≤  60∘ , and 10∘ ≤ 𝜙𝜙 ≤ 80∘ 

Find the volume V.  

Solution: 

𝑑𝑑 = �𝑎𝑎𝑑𝑑
𝑣𝑣

= � � � 𝑅𝑅2 sin𝜃𝜃 𝑎𝑎𝑅𝑅 𝑎𝑎𝜃𝜃 𝑎𝑎𝜙𝜙
3

𝑟𝑟=1

60∘

𝜃𝜃=15∘

80∘

𝜙𝜙=10∘
= � � �

𝑟𝑟3

3 �
1

3

sin𝜃𝜃  𝑎𝑎𝜃𝜃 𝑎𝑎𝜙𝜙
60∘

𝜃𝜃=15∘

80∘

𝜙𝜙=10∘
 

= � �
26
3 sin𝜃𝜃  𝑎𝑎𝜃𝜃 𝑎𝑎𝜙𝜙

60∘

𝜃𝜃=15∘

80∘

𝜙𝜙=10∘
= �

26
3

(−cos𝜃𝜃)15∘
60∘

 𝑎𝑎𝜙𝜙
80∘

𝜙𝜙=10∘
= 4.038� 𝑎𝑎𝜙𝜙

80∘

𝜙𝜙=10∘
 

= 4.038 (𝜙𝜙)|1080 =  4.038 (80− 10) ∗
𝜋𝜋

180 = 4.9333  Unit3 

Example 11: -  

Find the area of the surface defined by:  

𝜃𝜃 = 45∘, 3 ≤ 𝑅𝑅 ≤  5,   and   0.1𝜋𝜋 ≤ 𝜙𝜙 ≤ 𝜋𝜋 

Solution: 

𝑆𝑆 = �𝑎𝑎𝑠𝑠
𝑠𝑠

= � �(𝑎𝑎𝑅𝑅)(𝑅𝑅 sin𝜃𝜃 𝑎𝑎𝜙𝜙)
5

𝑟𝑟=3

𝜋𝜋

𝜙𝜙=0.1𝜋𝜋

= � � 𝑅𝑅 sin 45° 𝑎𝑎𝑟𝑟 𝑎𝑎𝜙𝜙
5

𝑟𝑟=3

𝜋𝜋

𝜙𝜙=0.1𝜋𝜋

= 

=
1
√2

�
𝑅𝑅2

2 �
3

5

(𝜙𝜙)0.1𝜋𝜋

𝜋𝜋
=  

1
√2

�
25 − 9

2 � (0.9𝜋𝜋) = 15.9943 Unit2 
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H.W 10: Find the angle between vector  �̅�𝐴 = 𝑎𝑎�𝑥𝑥 + 3𝑎𝑎�𝑦𝑦 + 2𝑎𝑎�𝑧𝑧 and the sphere R= 1 at the 
point P(1,20o, 30o).  
Ans.:  45o.93 
H.W 11: Prove that the field  �̅�𝐴 = sin𝜃𝜃 𝑎𝑎�𝜃𝜃 in Cartesian coordinates is given by:   

�̅�𝐴 =
𝑥𝑥𝑧𝑧𝑎𝑎�𝑥𝑥 + 𝑦𝑦𝑧𝑧𝑎𝑎�𝑦𝑦 − (𝑥𝑥2 + 𝑦𝑦2)𝑎𝑎�𝑧𝑧

𝑥𝑥2 + 𝑦𝑦2+𝑧𝑧2  

H.W 12: Obtain the expression for the volume of a sphere of radius a [m] from the 
differential volume.  
Ans.:  𝑑𝑑 =  4

3
𝜋𝜋𝑎𝑎3 

H.W 13: Use the spherical coordinates system to find the area 
of the strip 𝛼𝛼 ≤ 𝜃𝜃 ≤ 𝛽𝛽 on the spherical shell of radius a [m] 
(Figure below). What results when 𝛼𝛼 = 0, 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 = 𝜋𝜋.   
Ans.:  2𝜋𝜋𝑎𝑎2 (cos𝛼𝛼 − cos𝛽𝛽) and 4𝜋𝜋𝑎𝑎2 
 

 
1.6 Integration of Vector Functions: 

 
1.6.1 Line Integral: 

Consider a vector field 𝐴𝐴 as shown in Fig. 1.22 and an arbitrary path 𝐶𝐶. The line integral 
of the vector �̅�𝐴 over the path 𝐶𝐶 is written as: 
 

𝑄𝑄 = ∫ 𝐴𝐴𝑐𝑐 . 𝑎𝑎𝑑𝑑 = ∫ |𝑐𝑐 𝐴𝐴||𝑎𝑎𝑑𝑑| cos 𝜃𝜃𝐴𝐴,𝑑𝑑𝑑𝑑  

∫ �̅�𝐴𝑝𝑝2
𝑝𝑝1

. �̅�𝑎𝑑𝑑 = ∫ |𝑝𝑝2
𝑝𝑝1

𝐴𝐴||�̅�𝑎𝑑𝑑| cos 𝜃𝜃𝐴𝐴,𝑑𝑑𝑑𝑑 

closed contour integral or a loop integral 

∫ 𝐴𝐴𝑐𝑐 . �̅�𝑎𝑑𝑑 = ∫ |𝑐𝑐 𝐴𝐴||𝑎𝑎𝑑𝑑| cos 𝜃𝜃𝐴𝐴,𝑑𝑑𝑑𝑑  

� �̅�𝐴 ⋅ �̅�𝑎𝑑𝑑 = � | �̅�𝐴||�̅�𝑎𝑑𝑑| cos 𝜃𝜃𝐴𝐴,𝑑𝑑𝑑𝑑 
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1.6.2 Surface Integral 

The surface integral of a vector is the flux (flow) of this vector through the surface. The 
surface integral is also written as: 

𝑄𝑄 = ∫ �̅�𝐴𝑠𝑠 ⋅ �̅�𝑎𝑠𝑠  

where �̅�𝑎𝑠𝑠 = 𝑎𝑎𝑠𝑠𝑎𝑎�𝑛𝑛 and where 𝑎𝑎�𝑛𝑛is the unit vector 
normal to surface S. 

If this surface is a closed surface, integration 
becomes as a closed surface integration: 

𝑄𝑄 = ∮ �̅�𝐴𝑠𝑠 ⋅ �̅�𝑎𝑠𝑠    

Closed surface integration gives the total or net flux through a closed surface. 

1.6.3 Volume Integral 

The volume integral of a vector field is a vector and is written as 

𝑃𝑃� = ∫ �̅�𝑝𝑣𝑣 𝑎𝑎𝑑𝑑    

In Cartesian coordinates, 

𝑃𝑃� = ∫ 𝑝𝑝𝑥𝑥𝑣𝑣 𝑎𝑎𝑑𝑑 𝑎𝑎𝑥𝑥��� + ∫ 𝑝𝑝𝑦𝑦𝑣𝑣 𝑎𝑎𝑑𝑑 𝑎𝑎𝑦𝑦���� + ∫ 𝑝𝑝𝑍𝑍𝑣𝑣 𝑎𝑎𝑑𝑑 𝑎𝑎𝑧𝑧���    

This type of vector integral is often called a regular or ordinary vector integral because it 
is essentially a scalar integral with the unit vectors added.  

Fig, 1.22 The line integral. (a) Open contour integration. (b) Closed 
 

Surface Integral 
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1.6  Del Operator and Gradient: 

The del operator, written 𝛻𝛻, is the vector differential operator. In Cartesian coordinates, 

𝛻𝛻 = 𝜕𝜕
𝜕𝜕𝑥𝑥
𝑎𝑎�𝑋𝑋 + 𝜕𝜕

𝜕𝜕𝑦𝑦
𝑎𝑎�𝑦𝑦 + 𝜕𝜕

𝜕𝜕𝑧𝑧
𝑎𝑎�𝑧𝑧   

This vector differential operator, otherwise known as the gradient operator, when it 
operates on a scalar function. The operator is useful in defining: 

1. The gradient of a scalar 𝑑𝑑, written. as 𝛻𝛻𝑑𝑑 

2. The divergence of a vector 𝐴𝐴, written as 𝛻𝛻 ⋅ �̅�𝐴 

3. The curl of a vector 𝐴𝐴, written as 𝛻𝛻 × �̅�𝐴 

4. The Laplacian of a scalar 𝑑𝑑, written as 𝛻𝛻2𝑑𝑑 

The gradient of a scalar function gives both the magnitude and direction of the maximum 
spatial rate of change of the scalar function. 
 
In Cartesian coordinates, the gradient of a scalar function is written as 

grad U= 𝛻𝛻𝛻𝛻 = ( 𝜕𝜕
𝜕𝜕𝑋𝑋

 𝑎𝑎𝑥𝑥��� + 𝜕𝜕
𝜕𝜕𝑦𝑦
𝑎𝑎𝑦𝑦���� + 𝜕𝜕

𝜕𝜕𝑍𝑍
 𝑎𝑎𝑧𝑧���)𝛻𝛻    

and is read as grad 𝛻𝛻 or del 𝛻𝛻.  

The gradient has the following general properties: 

 It operates on a scalar function and results in a vector function. 

 The gradient is normal to a constant value surface.  

 The gradient always points in the direction of maximum change in the scalar 

function.  

for cylindrical coordinates, 

𝛻𝛻𝑑𝑑 =
𝜕𝜕𝑑𝑑
𝜕𝜕𝑟𝑟 𝑎𝑎�𝑟𝑟 +

1
𝑟𝑟
𝜕𝜕𝑑𝑑
𝜕𝜕𝜙𝜙 𝑎𝑎�𝜙𝜙 +

𝜕𝜕𝑑𝑑
𝜕𝜕𝑧𝑧 𝑎𝑎�𝑧𝑧 
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and for spherical coordinates, 

𝛻𝛻𝑑𝑑 =
𝜕𝜕𝑑𝑑
𝜕𝜕𝑅𝑅 𝑎𝑎�𝑅𝑅 +

1
𝑅𝑅
𝜕𝜕𝑑𝑑
𝜕𝜕𝜃𝜃 𝑎𝑎�𝜃𝜃 +

1
𝑅𝑅 sin 𝜃𝜃

𝜕𝜕𝑑𝑑
𝜕𝜕𝜙𝜙 𝑎𝑎�𝜙𝜙 

Example 12: Find the gradient of the following scalar fields: 

(a) 𝑑𝑑 = 𝑒𝑒−𝑧𝑧 sin 2𝑥𝑥 cosh 𝑦𝑦 

(b) 𝛻𝛻 = 𝑟𝑟2𝑧𝑧 cos 2𝜙𝜙 

(c) 𝑊𝑊 = 10𝑅𝑅sin2𝜃𝜃 cos 𝜙𝜙 

Solution: 

(𝑎𝑎〉 𝛻𝛻𝑑𝑑 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
𝑎𝑎�𝑥𝑥 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑦𝑦
𝑎𝑎�𝑦𝑦 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑧𝑧
𝑎𝑎�𝑧𝑧 

= 2𝑒𝑒−𝑧𝑧 cos 2𝑥𝑥 cosh 𝑦𝑦𝑎𝑎�𝑋𝑋 + 𝑒𝑒−𝑧𝑧 sin 2𝑥𝑥 sinh 𝑦𝑦𝑎𝑎�𝑦𝑦 − 𝑒𝑒−𝑧𝑧 sin 2𝑥𝑥 cosh 𝑦𝑦𝑎𝑎�𝑧𝑧 

(b) 𝛻𝛻𝛻𝛻 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟
𝑎𝑎�𝑟𝑟 + 1

𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜙𝜙
𝑎𝑎�𝜙𝜙 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑧𝑧
𝑎𝑎�𝑧𝑧 

= 2𝑟𝑟𝑧𝑧 cos 2𝜙𝜙𝑎𝑎�𝑟𝑟  − 2𝑟𝑟𝑧𝑧 sin 2𝜙𝜙𝑎𝑎�𝜙𝜙 + 𝑟𝑟2𝑐𝑐𝑐𝑐𝑠𝑠2𝜙𝜙𝑎𝑎�𝑧𝑧 

(𝑐𝑐) 𝛻𝛻𝑊𝑊 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅
𝑎𝑎�𝑅𝑅 + 1

𝑅𝑅
𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃
𝑎𝑎�𝜃𝜃 + 1

𝑅𝑅 sin 𝜃𝜃
𝜕𝜕𝜕𝜕
𝜕𝜕𝜙𝜙
𝑎𝑎�𝜙𝜙 

=  10sin2𝜃𝜃 cos 𝜙𝜙𝑎𝑎�𝑅𝑅 +  10 sin 2𝜃𝜃 cos 𝜙𝜙𝑎𝑎�𝜃𝜃 −  10 sin 𝜃𝜃 sin 𝜙𝜙𝑎𝑎�𝜙𝜙 

 

1.7  Divergence and Divergence Theorem: 

The divergence of �̅�𝐴 at a given point P is the outward flux per unit volume as the volume 
shrinks about P. 

𝑎𝑎𝑑𝑑𝑑𝑑�̅�𝐴 = 𝛻𝛻 ⋅ �̅�𝐴 = lim
𝛥𝛥𝑣𝑣→0

∮ �̅�𝐴𝑆𝑆 ⋅𝑑𝑑𝑆𝑆����

𝛥𝛥𝑣𝑣
 

where 𝛥𝛥𝑑𝑑 is the volume enclosed by the closed surface 𝑆𝑆 in which 𝑃𝑃 is located. 
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Fig. 1.23. Illustration of the divergence of a vector field at 𝑃𝑃; (𝑎𝑎) positive divergence, (𝑏𝑏) 
negative divergence, (𝑐𝑐) zero divergence. 

The divergence in different coordinate systems can be written as: 

𝛻𝛻 ⋅ �̅�𝐴 = 𝜕𝜕𝐴𝐴𝑋𝑋
𝜕𝜕𝑥𝑥

 + 
𝜕𝜕𝐴𝐴𝑦𝑦
𝜕𝜕𝑦𝑦

 + 𝜕𝜕𝐴𝐴𝑧𝑧
𝜕𝜕𝑧𝑧

 Cartesian 

𝛻𝛻 ⋅ �̅�𝐴 = 1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝑟𝑟

(𝑟𝑟𝐴𝐴𝑟𝑟) + 1
𝑟𝑟
𝜕𝜕𝐴𝐴𝜙𝜙
𝜕𝜕𝜙𝜙

 + 𝜕𝜕𝐴𝐴𝑧𝑧
𝜕𝜕𝑧𝑧

 Cylindrical 

𝛻𝛻 ⋅ �̅�𝐴 = 1
𝑅𝑅2

𝜕𝜕
𝜕𝜕𝑅𝑅

(𝑅𝑅2𝐴𝐴𝑅𝑅) + 1
𝑅𝑅 𝑠𝑠𝑠𝑠𝑛𝑛 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃

(𝐴𝐴𝜃𝜃 𝑠𝑠𝑑𝑑𝑎𝑎 𝜃𝜃) + 1
𝑅𝑅 𝑠𝑠𝑠𝑠𝑛𝑛 𝜃𝜃

𝜕𝜕𝐴𝐴𝜙𝜙
𝜕𝜕𝜙𝜙

 Spherical 

 

Note the following properties of the divergence of a vector field: 

1. It produces a scalar field. 

2. The divergence of a scalar 𝑑𝑑, 𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑, makes no sense. 

3. 𝛻𝛻 ⋅ (�̅�𝐴 + 𝐵𝐵�) = 𝛻𝛻 ⋅ �̅�𝐴 + 𝛻𝛻 ⋅ 𝐵𝐵�  

4. 𝛻𝛻 ⋅ (𝑑𝑑�̅�𝐴) = 𝑑𝑑𝛻𝛻 ⋅ �̅�𝐴 + �̅�𝐴. 𝛻𝛻𝑑𝑑 

The divergence theorem follows from the definition of the divergence, stating that the 
volume integral of 𝛻𝛻 ⋅ 𝐴𝐴 over a volume is equal to the closed surface integral of 𝑨𝑨� over 
the surface bounding the volume. The divergence theorem is expressed as 

∫ 𝛻𝛻�𝜈𝜈 ⋅ �̅�𝐴 𝑎𝑎𝑑𝑑 = ∮ �̅�𝐴𝑠𝑠 ⋅ 𝑎𝑎𝑠𝑠��� 
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where 𝑆𝑆 is the bounding surface of the volume 𝒱𝒱, and 𝑎𝑎𝑠𝑠 is the differential area vector on 
𝑆𝑆, which is always directed out of the enclosed volume. 

Its most important use is the conversion of volume integrals of the divergence of a vector 
field into closed surface integrals. 

Example 13 :- Find the divergence of the position vector to an arbitrary point. 
Solution : 
We will find the solution in Cartesian as well as in spherical coordinates. 
𝑎𝑎〉 Cartesian coordinates. The expression for the position vector to an arbitrary 
point (𝑥𝑥,𝑦𝑦, 𝑧𝑧) is 

𝑂𝑂𝑃𝑃 = 𝑥𝑥𝑎𝑎𝑥𝑥��� + 𝑦𝑦𝑎𝑎𝑦𝑦��� + 𝑧𝑧𝑎𝑎𝑧𝑧��� 

Then 

𝛻𝛻 ⋅ (𝑂𝑂𝑃𝑃) =
𝜕𝜕𝑥𝑥
𝜕𝜕𝑥𝑥 +

𝜕𝜕𝑦𝑦
𝜕𝜕𝑦𝑦 +

𝜕𝜕𝑧𝑧
𝜕𝜕𝑧𝑧 = 3. 

𝑏𝑏〉 Spherical coordinates. Here the position vector is simply 

𝑂𝑂𝑃𝑃 = 𝑟𝑟𝑎𝑎𝑟𝑟��� 

Its divergence in spherical coordinates (𝑟𝑟, 𝜃𝜃,𝜙𝜙) can be obtained by 

𝛻𝛻 ⋅ �̅�𝐴 = 1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝑟𝑟

(𝑟𝑟2𝐴𝐴𝑟𝑟) + 1
𝑟𝑟 sin 𝜃𝜃

𝜕𝜕
𝜕𝜕𝜃𝜃

(𝐴𝐴𝜃𝜃 sin 𝜃𝜃) + 1
𝑟𝑟 sin 𝜃𝜃

𝜕𝜕𝐴𝐴𝜙𝜙
𝜕𝜕𝜙𝜙

 

Hence,  𝛻𝛻 ⋅ (𝑂𝑂𝑃𝑃�����⃗ ) = 3, as expected. 

Example 14:- Given �̅�𝐴 = 𝑥𝑥2𝑎𝑎𝑥𝑥��� + 𝑥𝑥𝑦𝑦 𝑎𝑎𝑦𝑦��� + 𝑦𝑦𝑧𝑧 𝑎𝑎𝑧𝑧���, verify the divergence theorem over a 
cube one unit on each side. The cube is situated in the first octant of the Cartesian 
coordinate system with one corner at the origin. 

Solution: We first evaluate the surface integral over the six faces. 

1. Front face: 𝑥𝑥 = 1, 𝑎𝑎𝑠𝑠��� = 𝑎𝑎𝑦𝑦𝑎𝑎𝑧𝑧 𝑎𝑎𝑥𝑥���; 

∫ A� ⋅ 𝑎𝑎𝑠𝑠���𝑓𝑓𝑟𝑟𝑓𝑓𝑛𝑛𝑓𝑓 𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓  = ∫ ∫ 𝑎𝑎𝑦𝑦𝑎𝑎𝑧𝑧1
0

1
0 = 1. 
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2. Back face: 𝑥𝑥 = 0, 𝑎𝑎𝑠𝑠��� = − 𝑎𝑎𝑦𝑦𝑎𝑎𝑧𝑧 𝑎𝑎𝑥𝑥���;  

� �̅�𝐴
𝑏𝑏𝑓𝑓𝑐𝑐𝑏𝑏 𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓

⋅ 𝑎𝑎𝑠𝑠��� = 0 

3. Left face: 𝑦𝑦 = 0, 𝑎𝑎𝑠𝑠��� = −aydx 𝑎𝑎𝑧𝑧���; 

∫ �̅�𝐴𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓 ⋅ 𝑎𝑎𝑠𝑠��� = 0. 

4. Right face: 𝑦𝑦 = 1, 𝑎𝑎𝑠𝑠��� = 𝑎𝑎𝑥𝑥𝑎𝑎𝑧𝑧 𝑎𝑎𝑦𝑦���; 

∫ �̅�𝐴𝑟𝑟𝑠𝑠𝑟𝑟ℎ𝑓𝑓 𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓 ⋅ 𝑎𝑎𝑠𝑠��� = ∫ ∫ 𝑥𝑥10
1
0 𝑎𝑎𝑥𝑥𝑎𝑎𝑧𝑧 = 1

2
. 

5. Top face: 𝑧𝑧 = 1, 𝑎𝑎𝑠𝑠��� = 𝑎𝑎𝑥𝑥𝑎𝑎𝑦𝑦 𝑎𝑎𝑧𝑧���; 

∫ �̅�𝐴𝑓𝑓𝑓𝑓𝑝𝑝 𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓 ⋅ 𝑎𝑎𝑠𝑠��� = ∫ ∫ 𝑦𝑦10
1
0 𝑎𝑎𝑥𝑥𝑎𝑎𝑦𝑦 = 1

2
. 

6. Bottom face: 𝑧𝑧 = 0, 𝑎𝑎𝑠𝑠��� = −𝑎𝑎𝑥𝑥𝑎𝑎𝑦𝑦 𝑎𝑎𝑧𝑧����;  

� �̅�𝐴
𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏 𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓

⋅ 𝑎𝑎𝑠𝑠��� = 0 

Adding the above six values, we have 

� 𝐴𝐴
𝑆𝑆

⋅ 𝑎𝑎𝑠𝑠 = 1 + 0 + 0 +
1
2 +

1
2 + 0 = 2 

Now the divergence of �̅�𝐴 is 

𝛻𝛻 . 𝐴𝐴 = 𝜕𝜕
𝜕𝜕𝑥𝑥

(𝑥𝑥2) + 𝜕𝜕
𝜕𝜕𝑦𝑦

 (𝑥𝑥𝑦𝑦) + 𝜕𝜕
𝜕𝜕𝑧𝑧

 (𝑦𝑦𝑧𝑧) = 3𝑥𝑥 + 𝑦𝑦. 

Hence, 

∫ 𝛻𝛻𝜕𝜕 ⋅ �̅�𝐴 𝑎𝑎𝑑𝑑 = ∫ ∫ ∫ (10
1
0

1
0 3𝑥𝑥 + 𝑦𝑦)𝑎𝑎𝑥𝑥𝑎𝑎𝑦𝑦𝑎𝑎𝑧𝑧 = 2 
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1.8 Curl : 

The curl of �̅�𝐴 is the circulation of the vector �̅�𝐴 per unit area, as this area tends to zero and 
is in the direction normal to the area when the area is oriented such that the circulation is 
maximum. The curl of a vector field is, therefore, a vector field, defined at any point in 
space. 

More accurately, we define the curl using the following relation: 

curl �̅�𝐴 ≡ 𝛻𝛻x�̅�𝐴 = lim
𝛥𝛥𝑠𝑠→0

1
𝛥𝛥𝑠𝑠

[𝑎𝑎�𝑛𝑛 ∮ �̅�𝐴𝑐𝑐 ⋅ �̅�𝑎ℓ] max  

 

The common notation for the curl of a vector A is ∇ × A� (read: del cross A), and it can be 
written in Cartesian coordinates as: 

∇ × �̅�𝐴 = (𝜕𝜕𝐴𝐴𝑍𝑍
𝜕𝜕𝑦𝑦

− 𝜕𝜕𝐴𝐴𝑦𝑦
𝜕𝜕𝑍𝑍

)𝑎𝑎𝑥𝑥��� +(𝜕𝜕𝐴𝐴𝑥𝑥
𝜕𝜕𝑍𝑍

− 𝜕𝜕𝐴𝐴𝑍𝑍
𝜕𝜕𝑋𝑋

)𝑎𝑎𝑦𝑦���� +(𝜕𝜕𝐴𝐴𝑦𝑦
𝜕𝜕𝑋𝑋

− 𝜕𝜕𝐴𝐴𝑥𝑥
𝜕𝜕𝑦𝑦

)𝑎𝑎𝑧𝑧��� 

The properties of the curl are: 
(1) The curl of a vector field is a vector field. 
(2) The magnitude of the curl gives the maximum circulation of the vector per unit area at 
a point. 
(3) The direction of the curl is along the normal to the area of maximum circulation at a 
point. 
(4) The curl has the general properties of the vector product: it is distributive but not 
associative 

∇ × (�̅�𝐴 + 𝐵𝐵�) = ∇ × �̅�𝐴 + ∇ × 𝐵𝐵� and ∇ × (�̅�𝐴 × 𝐵𝐵�) ≠ (∇  × �̅�𝐴) × 𝐵𝐵�  
(5) The divergence of the curl of any vector function is identically zero: 

∇ ⋅ (∇× �̅�𝐴) ≡ 0 
(6) The curl of the gradient of a scalar function is also identically zero for any scalar: 

∇ × (∇𝑑𝑑) ≡ 0 
For cylindrical coordinate, 

𝛻𝛻 x �̅�𝐴 = 1
𝑟𝑟
�

𝑎𝑎�𝑟𝑟 𝑎𝑎�𝜙𝜙𝑟𝑟 𝑎𝑎�𝑧𝑧
𝜕𝜕
𝜕𝜕𝑟𝑟

𝜕𝜕
𝜕𝜕𝜙𝜙

𝜕𝜕
𝜕𝜕𝑧𝑧

𝐴𝐴𝑟𝑟 𝑟𝑟𝐴𝐴𝜙𝜙 𝐴𝐴𝑧𝑧

�, 
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For spherical coordinate, 

𝛻𝛻 x �̅�𝐴 = 1
𝑅𝑅2 sin 𝜃𝜃

�

𝑎𝑎�𝑅𝑅 𝑎𝑎�𝜃𝜃𝑅𝑅 𝑎𝑎�𝜙𝜙𝑅𝑅 sin 𝜃𝜃
𝜕𝜕
𝜕𝜕𝑅𝑅

𝜕𝜕
𝜕𝜕𝜃𝜃

𝜕𝜕
𝜕𝜕∅

𝐴𝐴𝑅𝑅 𝑅𝑅𝐴𝐴𝜃𝜃 𝑅𝑅 sin 𝜃𝜃𝐴𝐴∅

� 

 

1.9 Stokes’s theorem: 

The Stokes’s theorem follows from the definition of the curl, stating that the surface 
integral of ∇ × A� over an open surface is equal to the closed line integral of �̅�𝐴 around the 
loop bounding the surface. The Stokes’s theorem is expressed as 

∫ (𝛻𝛻 × �̅�𝐴)𝑠𝑠  ⋅ 𝑎𝑎𝑠𝑠��� = ∮ �̅�𝐴𝐿𝐿 . 𝑎𝑎𝑑𝑑�  

 

Example 15:- Given 𝐹𝐹� = 𝑎𝑎�𝑥𝑥𝑥𝑥𝑦𝑦 − 𝑎𝑎�𝑦𝑦2𝑥𝑥, verify Stokes’s theorem over a quarter-circular 
disk with a radius 3 in the first quadrant. 

Solution Let us first find the surface integral of 𝛻𝛻x𝐹𝐹� 

Stokes’ theorem. (a) Vector field A and an open surface s. (b) The only 
components of the contour integrals on the small loops that do not cancel are 

along the outer contour L 
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𝛻𝛻x𝐹𝐹� = �

𝑎𝑎�𝑥𝑥 𝑎𝑎�𝑦𝑦 𝑎𝑎�𝑧𝑧
𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕
𝜕𝜕𝑧𝑧

𝑥𝑥𝑦𝑦 −2𝑥𝑥 0
� = −𝑎𝑎𝑧𝑧(2 + 𝑥𝑥) .  

∫ (𝑠𝑠 𝛻𝛻x𝐹𝐹�) ⋅ �̅�𝑎𝑠𝑠 = ∫ ∫ (�9−𝑦𝑦2

0
3
0 𝛻𝛻x𝐹𝐹�) . (𝑎𝑎�𝑧𝑧 dx dy) 

= � [
3

0
� −
�9−𝑦𝑦2

0
(2 + 𝑥𝑥)𝑎𝑎𝑥𝑥]𝑎𝑎𝑦𝑦 

=  −� [
3

0
2�9 − 𝑦𝑦2 +

1
2 (9 − 𝑦𝑦2)]𝑎𝑎𝑦𝑦 

=  −[𝑦𝑦�9 − 𝑦𝑦2 + 9sin−1
𝑦𝑦
3 +

9
2𝑦𝑦 −

𝑦𝑦3

6 ]03 

=  −9(1 + 𝜋𝜋
2

) . 

For the line integral around ABOA  

From A to B: ∫ 𝐹𝐹� ⋅ �̅�𝑎ℓ𝐴𝐴
𝐴𝐴 = ∫ −𝜋𝜋/2

0 3(9sin2𝜙𝜙 cos 𝜙𝜙 + 6cos2𝜙𝜙)𝑎𝑎𝜙𝜙 

= −9(sin3𝜙𝜙 + 𝜙𝜙 +  sin 𝜙𝜙 cos 𝜙𝜙)|0
𝜋𝜋/2 = −9(1 +

𝜋𝜋
2), 

From 𝐵𝐵 to 𝑂𝑂: 𝑥𝑥 = 0, and 𝐹𝐹� ⋅ �̅�𝑎ℓ = 𝐹𝐹� ⋅ (−𝑎𝑎�𝑦𝑦𝑎𝑎𝑦𝑦) = 2𝑥𝑥𝑎𝑎𝑦𝑦 = 0. 

From 𝑂𝑂 to 𝐴𝐴:𝑦𝑦 = 0, and 𝐹𝐹� ⋅ �̅�𝑎ℓ = 𝐹𝐹� ⋅ (𝑎𝑎�𝑥𝑥𝑎𝑎𝑥𝑥) = 𝑥𝑥𝑦𝑦𝑎𝑎𝑥𝑥 = 0. Hence, 

∮ 𝐹𝐹� ⋅ �̅�𝑎ℓ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∫ 𝐹𝐹� ⋅ �̅�𝑎ℓ𝐴𝐴
𝐴𝐴 =  −9(1 + 𝜋𝜋

2
)  

Stokes’s theorem is verified.  
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The Helmholtz Theorem 

The Helmholtz theorem states: “A vector field is uniquely defined by specifying its 
divergence and its curl.” The Helmholtz theorem is normally written as 
 

𝐵𝐵� = −𝛻𝛻𝛻𝛻 + 𝛻𝛻 × �̅�𝐴 

where 𝛻𝛻 is a scalar field and A is a vector field. That is, any vector field can be decomposed 
into two terms; one is the gradient of a scalar function and the other is the curl of a vector 
function.  
Divergenceless field is called solenoidal and a curl‐free field is called irrotational. We may 
classify vector fields in accordance with their being solenoidal and/or irrotational. A vector 
field �̅�𝐴 is: - 
1). Solenoidal and irrotational if 

𝛻𝛻 ⋅ �̅�𝐴 = 0 and 𝛻𝛻x�̅�𝐴 = 0. 
Ex: A static electric field in a charge‐free region. 
2). Solenoidal but not irrotational if 

𝛻𝛻 ⋅ �̅�𝐴 = 0 and 𝛻𝛻x�̅�𝐴 ≠ 0. 
Ex: A steady magnetic field in a current‐carrying conductor. 
3). Irrotational but not solenoidal if 

𝛻𝛻x�̅�𝐴 = 0 and 𝛻𝛻 ⋅ �̅�𝐴 ≠ 0. 
Ex: A static electric field in a charged region. 
4). Neither solenoidal nor irrotational if 

𝛻𝛻 ⋅ �̅�𝐴 ≠ 0 and 𝛻𝛻x�̅�𝐴 ≠ 0. 
Ex: An electric field in a charged medium with a time‐varying magnetic field. 
 
Example16: Given a vector function 𝐹𝐹� = 𝑎𝑎�𝑥𝑥(3𝑦𝑦 − 𝑐𝑐1𝑧𝑧) + 𝑎𝑎�𝑦𝑦(𝑐𝑐2𝑥𝑥 − 2𝑧𝑧) 
−𝑎𝑎�𝑧𝑧(𝑐𝑐3𝑦𝑦 + 𝑧𝑧) . Determine the constants 𝑐𝑐1, 𝑐𝑐2, and 𝑐𝑐3 if 𝐹𝐹� is irrotational. 

Solution 

For 𝐹𝐹� to be irrotational, 𝛻𝛻x𝐹𝐹� = 0; that is, 

𝛻𝛻𝑥𝑥𝐹𝐹� = �

𝑎𝑎�𝑥𝑥
𝜕𝜕
𝜕𝜕𝑥𝑥

𝑎𝑎�𝑦𝑦
𝜕𝜕
𝜕𝜕𝑦𝑦

𝑎𝑎�𝑧𝑧
𝜕𝜕
𝜕𝜕𝑧𝑧

3𝑦𝑦 − 𝑐𝑐1𝑧𝑧 −2𝑧𝑧𝑐𝑐2𝑥𝑥 −(𝑐𝑐3𝑦𝑦 + 𝑧𝑧)

� 
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= 𝑎𝑎𝑋𝑋(−𝑐𝑐3 + 2) − 𝑎𝑎𝑦𝑦𝑐𝑐1 + 𝑎𝑎𝑧𝑧(𝑐𝑐2 − 3) = 0. 

Each component of 𝛻𝛻x𝐹𝐹� must vanish. Hence 𝑐𝑐1 = 0, 𝑐𝑐2 = 3, and 𝑐𝑐3 = 2. 

H.W 14. Determine the scalar potential function 𝑑𝑑 whose negative gradient equals 𝐹𝐹�. 

 


